

TP-SPP-04 Data for Power System Modeling and Analysis

Transmission System Planning Standards, Policies, and Procedures

System Planning Avista Utilities PO Box 3727, MSC-16 Spokane, WA 99220 TransmissionPlanning@avistacorp.com

Version	Date	Description	Author	Review
V11	2/27/2017	Various Updates	Team	R. Maguire
V12	5/5/2018	WECC case building update	Team	R. Maguire
V13	4/29/2020	Update for PRC-006-2, Section 9.5.2.2	Team	S. Wilson
V14	6/15/2023	Standard references update, minor revisions	Team	S. Wilson
V15	4/1/2024	Add FAC-014-3: R6 reference, formatting	Team	S. Wilson

Table of Contents

1. Int	roduction	. 4
1.1.	Purpose	. 4
1.2.	Applicable Standards	. 4
1.3.	Applicable Avista Registered Functional Entity	. 4
1.4.	Effective Date	. 5
2. Da	ta Requirements	. 5
2.1.	Data Format (MOD-032-1, R1.2.1)	. 5
2.2.	Level of Detail (MOD-032-1, R1.2.2)	. 5
2.3.	Case Types/Scenarios (MOD-032-1, R1.2.3)	. 5
3. Re	porting Procedure	. 6
3.1.	Point of Contact	. 6
3.2.	Annual Update	. 6
3.3.	Applicable Entities	. 6
4. Sh	aring with Applicable Entities	. 7
4.1.	Posting of Data Requirements and Reporting Procedures (MOD-032-1, R1.3)	.7
4.2.	Sharing Data with Adjacent Entities (PRC-006-5, R7)	. 7
4.3.	Model updating procedures (FAC-014, r6)	. 7
5. Tra	ansmission Owner Data Requirements	. 7
5.1.	Transmission System Oneline Drawing	. 7
5.2.	Substation Data	. 7
5.3.	Transmission Line Data	. 8
5.3	3.1. Steady State	. 8
5.3	3.2. Dynamic	. 9
5.4.	Mutual Line Impedance Data	. 9
5.5.	Transformer Data	. 9
5.5	5.1. Steady State	10
5.5	5.2. Dynamic	14
5.6.	Shunt Data	14
6. Ge	nerator Owner Data Requirements	16
6.1.	Substation Data	16
6.2.	Generator Data	16
6.2	2.1. Steady State	16
6.2	2.2. Dynamic	19
6.3.	Shunt Data	19

TP-SPP-04 Data for Power System Modeling and Analysis

6.4.	Generator Step Up Transformer Data	19
6.5.	Generator Lead Line data	19
6.6.	Station Service Load data	19
7. Re	source Planner Data Requirements	19
8. Dis	tribution Provider Data Requirements	20
8.1.	Load Data	20
8.2.	Distribution Transformer Data	20
9. Tra	ansmission Planner Data Requirements	20
9.1.	Substation Data	20
9.2.	Bus Data	21
9.3.	Transmission Line (Branch) Data	23
9.4.	Transformer Data	25
9.4	.1. Two Winding Transformer	26
9.4	.2. Three Winding Transformer	29
9.5.	Load Data	32
9.5	.1. Steady State	32
9.5	.2. Dynamic	34
9.6.	Large Motors	35
9.7.	Generator	36
9.8.	Shunt	40
10. \	NECC Data Submission	44
10.1.	Pre-Run Data Submittal	44
10.2.	Review Data Submittal	48
11. F	Planning Case Development	48
12. /	Appendix – Sample Data	51
12.1.	Sample Transformer Test Report	51
12.2.	Sample Calculations	52

1. Introduction

1.1. Purpose

Development and periodical review of the steady state, dynamic, and short circuit data used to model Avista's Planning Coordinator area of the Transmission System should be conducted in a well-documented and procedural format. Specific procedures are given to formulate a database containing all pertinent data of the system components for use in steady state and dynamic study software. By following the guidelines herein, the Transmission Planning department will be able to develop an accurate and consistent model of the Transmission System and also be able to track modeling changes for historical purposes.

The transmission system model updates are provided to Transmission Operations for inclusion in the models used for Daily Operational Planning Analysis as well as the SCADA Engineer for inclusion in the Avista real time model. The SCADA Engineer, in turn, forwards the updates on to the Reliability Coordinator for inclusion in their real time transmission system model.

Detailed data submittal procedures for the purpose of WECC base case development are provided to ensure proper data submission is completed. Further procedures outline the utilization of WECC approved base case to develop planning cases for internal studies.

1.2. Applicable Standards

The development of TP-SPP-04 and the execution of its guidelines are intended to ensure compliance with the following NERC Standards and regional criteria or guidelines:

- MOD-032-1 Data for Power System Modeling and Analysis
 - \circ $\,$ Establish consistent modeling data requirements and reporting procedures $\,$
- TPL-001-5.1 Transmission System Planning Performance Requirements
 - Studies required for Planning Assessments require Transmission Planners and Planning Coordinators to maintain models of their Transmission System.
- PRC-006-5, R6-R7 Automatic Underfrequency Load Shedding
 - Establish maintenance and coordination requirements for UFLS database.
- FAC-014-3, R6 Establish and Communicate System Operating Limits
 - Utilize Facility Ratings, System steady state voltage limits and stability criteria equal or more limiting than those described in the Reliability Coordinator's SOL Methodology.

1.3. Applicable Avista Registered Functional Entity

The following functional entities, of which Avista is registered and therefore are applicable to the Standard requirements identified in Section 1.2, are represented within TP-SPP-04 for the listed Standard requirements.

- Transmission Planner
 - o TPL-001-5.1: R1-R2
 - MOD-032-1: R1, R4
 - FAC-014-3: R6

- Planning Coordinator
 - o TPL-001-5.1: R1-R2
 - o PRC-006-5: R6-R7
 - o MOD-032-1: R1, R4
 - FAC-014-3: R6

1.4. Effective Date

April 1, 2024 (Revision 15)

2. Data Requirements

2.1. Data Format (MOD-032-1, R1.2.1)

The development of power system models will be performed by the Transmission Planner function based on the data collected from each Balancing Authority, Generator Owner, Resource Planner, Transmission Owner, Distribution Provider, and Transmission Service Provider. The following options are available to best fit the availability of the data from each entity:

- Provide data within PowerWorld .pwb or .aux file formats
- Tabulated spreadsheet (pre-populated tables with data from previous data submittals can be provided)

2.2. Level of Detail (MOD-032-1, R1.2.2)

The level of detail for each type of facility is described in its respective section within TP-SPP-04.

2.3. Case Types/Scenarios (MOD-032-1, R1.2.3)

Various case types and scenarios are used in power system analysis. Typical variations of data for power system modeling include seasonal load, generation, and voltage profiles. Additionally, power system analysis in the planning horizon requires utilizing forecasted profile data and assumptions regarding modification to the transmission system over time.

Specific data requirements to represent the desired scenarios will be provided for each type of facility within TP-SPP-04. The following list is a general summary of the typical scenarios analyzed:

- Heavy Summer and Heavy Winter
 - Year two (next year, i.e., 2016 case if case is created and used in 2015) (TPL-001-5.1, R2.1.1, R2.4.1)
 - Year five (TPL-001-5.1, R2.1.1, R2.4.1)
 - Year ten (TPL-001-5.1, R2.2.1, R2.5)
- Light Summer and Light Winter
 - Year two (next year, i.e., 2016 case if case is created and used in 2015) (TPL-001-5.1, R2.1.2, R2.4.2)
 - Year five (TPL-001-5.1, R2.1.2, R2.4.2)
- Heavy Summer with Low Local Hydro Generation (generation dispatch scenario sensitivity)

- Year two (next year, i.e., 2016 case if case is created and used in 2015) (TPL-001-5.1, R2.1.1, R2.4.1)
- Year five (TPL-001-5.1, R2.1.3, R2.4.3 for R2.1.1 and R2.4.1)
- Year ten (TPL-001-5.1, R2.5 for R2.2.1)
- Transfer Scenarios
 - West of Hatwai East to West (TPL-001-5.1, R2.1.3, R2.4.3 for R2.1.2 and R2.4.2)
 - Montana to Northwest East to West (TPL-001-5.1, R2.1.3, R2.4.3 for R2.1.2 and R2.4.2)
 - Montana to Northwest West to East (TPL-001-5.1, R2.1.3, R2.4.3 for R2.1.1 and R2.4.1)
 - Idaho to Northwest East to West (TPL-001-5.1, R2.1.3, R2.4.3 for R2.1.2 and R2.4.2)
 - Idaho to Northwest West to East (TPL-001-5.1, R2.1.3, R2.4.3 for R2.1.1 and R2.4.1)

3. Reporting Procedure

3.1. Point of Contact

Applicable entities within Avista's Planning Coordinator Area, in accordance with MOD-32-1, shall submit documentation, data, and associated correspondence to the following email address:

• TransmissionPlanning@avistacorp.com

3.2. Annual Update

Data shall be submitted by each applicable entity as listed within TP-SPP-04 within the third calendar quarter of each year. (MOD-032-1, R1.2.4)

For data that has not changed since the last submission, a written confirmation that the data has not changed is sufficient. (MOD-032-1, R2)

3.3. Applicable Entities

- Avista: Balancing Authority, Generator Owner, Transmission Owner, Resource Planner, Distribution Provider and Transmission Service Provider, Transmission Operations, SCADA Engineering
- Clearway Renewable Operation and Maintenance LLC for Rattlesnake Flats
- Columbia Basin Hydropower for Main Canal and Summer Falls
- City of Spokane for Spokane Waste to Energy
- Palouse Wind LLC for Palouse Wind
- Reliability Coordinator

4. Sharing with Applicable Entities

4.1. Posting of Data Requirements and Reporting Procedures (MOD-032-1, R1.3)

TP-SPP-04 will be posted internally on the Avista Transmission Planning SharePoint site and externally on Avista's OASIS.

4.2. Sharing Data with Adjacent Entities (PRC-006-5, R7)

Avista Transmission Planning will share data collected through the process defined in TP-SPP-04 with adjacent entities, including Planning Coordinators, in its Interconnection within 30 calendar days of a request.

4.3. Model updating procedures (FAC-014, r6)

Avista Transmission Planning will provide transmission model updates to Transmission Operations and SCADA Engineering throughout the course of the year as system topology and ratings are updated. The update files will be provided in auxiliary file format (*.aux) suitable for incorporation in PowerWorld Simulator software. SCADA Engineering is responsible for converting the format as appropriate and submittal to the Reliability Coordinator for inclusion in their Real Time Model. This process in intended to provide for consistency in the models used for Transmission Planning Analysis, Transmission Operations Daily Operational Planning Analysis, SCADA Engineering's Real Time Model Analysis, and the Reliability Coordinators Real Time Model Analysis.

The facility ratings associated with these model updates will be reviewed on an annual basis to verify they are equally or more limiting than those used by Transmission Operations, who in turn provides them to the Reliability Coordinator. Less limiting facility ratings settings may be used by Transmission Planning if the technical rationale is provided to the affected Transmission Operator, Transmission Planner, Planning Coordinator and Reliability Coordinator.

5. Transmission Owner Data Requirements

5.1. Transmission System Oneline Drawing

Transmission system oneline drawings shall be provided by each applicable Transmission Owner. The oneline drawings shall contain the following attributes:

- Station topology including bus configuration
- Circuit breaker and switch location and labels
- Owner of each facility shown (MOD-032-1, Att. 1 SS-1b)
- Nominal voltage of equipment shown (MOD-032-1, Att. 1 SS-1a)

5.2. Substation Data

Substations are used in power system modeling to aggregate multiple buses and their connected devices. The requested data is listed below in Table 1. The description for each field shall be followed.

Level of Detail: Each BES station owned by each Transmission Owner.

Field	Description	MOD-032-01 Attachment 1
Name	Name of the station. A string of any length is permitted.	SS-9
Latitude	Geographic Latitude in decimal degrees.	SS-9
Longitude	Geographic Longitude in decimal degrees.	SS-9
IDExtra	Three- or four-letter abbreviation for station.	SS-9
RGround	Resistance(Ω) between the substation neutral and ground.	SS-9

Table 1: Substation Data Requirements

5.3. Transmission Line Data

The requested data is listed in the below table. The description for each field shall be followed.

Level of Detail: All BES transmission lines shall have data provided. A transmission line is defined by the stations with circuit breakers where the transmission line terminates. Modeling of transmission lines typically requires modeling several segments to account for taps and connected distribution substations. Each segment modeled shall have limits set according to the elements represented by each segment. Each section of transmission line as illustrated below needs to be represented for power system modeling. Data for radial taps greater than 0.1 miles shall be provided.

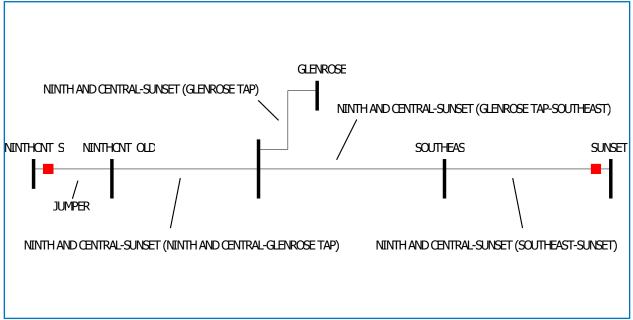


Figure 1: Transmission Line Data Requirements

5.3.1. Steady State

Field	Description	MOD-032-01 Attachment 1
	Unique label identifier for this object. Syntax: LineStationA-	
Label	LineStationB kV (SectionStationA-SectionStationB) i.e., SUNSET-WESTSIDE 115kV (GARDEN SPRINGS-WTE TAP)	SS-9
StatusNormal	Normal status of the branch. Set to either OPEN or CLOSED	SS-4d
	Series Resistance of the branch in per unit on the system	
R	MVABase and the nominal kV of the from bus	SS-4a
	Series Reactance of the branch in per unit on the system	
Х	MVABase and the nominal kV of the from bus	SS-4a

Field	Description	MOD-032-01 Attachment 1
	Shunt Susceptance of the branch in per unit on the system	
В	MVABase and the nominal kV of the from bus	SS-4b
LineLength	Length of the line.	SS-9
LimitAMPA	Summer Normal Rating of the branch in Amps at 40°C	SS-4c
LimitAMPB	Summer Emergency Rating of the branch in Amps at 40°C	SS-4c
LimitAMPC	Winter Normal Rating of the branch in Amps at 0°C	SS-4c
LimitAMPD	Winter Emergency Rating of the branch in Amps at 0°C	SS-4c
LimitAMPE	Fall Normal Rating of the branch in Amps at 30°C	SS-4c
LimitAMPF	Fall Emergency Rating of the branch in Amps at 30°C	SS-4c
LimitAMPG	Spring Normal Rating of the branch in Amps at 30°C	SS-4c
LimitAMPH	Spring Emergency Rating of the branch in Amps at 30°C	SS-4c
FaultRZero	Zero sequence resistance of the branch in per unit on the system MVABase and the nominal kV of the from bus	SC-1c
FaultXZero	Zero sequence reactance of the branch in per unit on the system MVABase and the nominal kV of the from bus	SC-1c
ConductorType	Conductor size, material, and code name. i.e. 795 ACSS Drake	SS-9
TowerConfiguration	Typical structure type	SS-9

Table 2: Steady State Data Requirements

5.3.2. Dynamic

Thermal, phase overcurrent, and underfrequency (see Section 9.5.2.2) relay information shall be provided upon request. Explicit relay modeling may not be necessary in all circumstances. Information allowing for appropriate relays representation is desired.

5.4. Mutual Line Impedance Data

The requested data is listed in the below table. The description for each field shall be followed.

Level of Detail: Mutual impedance data shall be provided for transmission lines with average distance from adjacent transmission lines is less than an average of 700 feet.

Field	Description	MOD-032-01 Attachment 1
Line 1 Label	Line section Label as used in Section 5.3.	SC-2
Line 2 Label	Line section Label as used in Section 5.3.	SC-2
Mutual R	Mutual Resistance (R)	SC-2
Mutual X	Mutual Reactance (X)	SC-2
L1 Mut. Start	Line 1 Mutual Range Start in percent from FROM end	SC-2
L1 Mut. End	Line 1 Mutual Range End in percent from FROM end	SC-2
L2 Mut. Start	Line 2 Mutual Range Start in percent from FROM end	SC-2
L2 Mut. End	Line 2 Mutual Range End in percent from FROM end	SC-2

 Table 3: Mutual Line Impedatance Data Requirements

5.5. Transformer Data

The requested data is listed in the below tables. The description for each field shall be followed. Transformer data shall be entered on the transformer base (transformer winding MVA base and winding voltage base.)

Level of Detail: Each BES transformer. Transformers with three windings where the third winding does not have a connected device (other than station service) can be represented as a two-winding transformer.

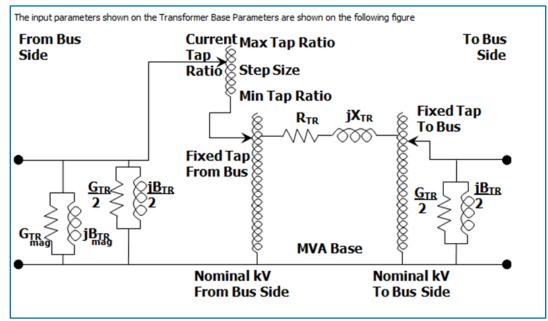


Figure 2: Transformer Model on Transformer Base

5.5.1. Steady State

5.5.1.1. Two-Winding Transformer Data

Field	Description	MOD-032-01 Attachment 1
	Unique label identifier for this object. Syntax: Station # kV/kV i.e.	
Label	BEACON #1 230/115kV	SS-9
StatusNormal	Normal status of the branch. Set to either OPEN or CLOSED	SS-6h
	Control Type of the transformer. Choices are Fixed, LTC, Mvar, Phase. LTC means that a voltage is controlled by moving the transformer tap. Mvar means that the Mvar flow on the branch is controlled by moving the tap ratio. Phase means that the MW flow on the branch is controlled by	
ControlType	changing the phase shift angle.	SS-9
	Set to either YES or NO to indicate whether automatic transformer control is available for this branch. If the ControlType = Phase, then the choice OPF is also available to indicate that the phase angle can be an	
AutoControl	OPF control variable.	SS-9
RegBusNum	Regulated Bus Number. Only used for the ControlType = LTC	SS-6f
UseLineDrop	Set to either YES or NO NO: Use normal voltage control based on the regulated bus and voltage setpoint. YES: Use line drop compensation voltage control always, including in the power flow solution. In order to use line drop compensation, the regulated bus must be one of the terminals of the branch. The line drop is then calculated looking out from that branch into the rest of the system.	SS-9
Озеспертор	Line Drop Compensation resistance value used during a contingency	00-0
Rcomp	power flow solution. Value will be expressed in per unit on the system MVA base.	SS-9

Field	Description	MOD-032-01 Attachment 1
	Line Drop Compensation reactance value used during a contingency	
N.	power flow solution. Value will be expressed in per unit on the system	00.0
Xcomp	MVA base.	SS-9
XFMVABase	MVA base on which the transformer impedances (Rxfbase, Xxfbase,	SS-9
XFNomkVbaseFrom	Gxfbase, Bxfbase, Gmagxfbase, Bmagxfbase) are given. Transformer's Nominal Voltage base for the FROM bus	
XFNomkVbaseTo	Transformer's Nominal Voltage base for the TO bus	SS-6a
XI NUTIK V DASETU	Total resistance at nominal voltage taps (typically middle tap position)	
	from primary to secondary winding given on the transformer base	
	reflected on the secondary winding. Refer to Figure 2 where RTR	
	represents Rxfbase. The following calculations have historically been	
	used.	
Rxfbase	$Rxfbase = \frac{Load_Loss kW}{1000 \cdot Rated_MVA} ^{1} \text{ or } Rxfbase = \frac{Z_{xfmr}}{30}$	SS-6b
	Total reactance at nominal voltage taps (typically middle tap position)	
	from primary to secondary winding given on the transformer base	
	reflected on the secondary winding. Refer to Figure 2 where X_{TR}	
	represents Xxfbase. The following calculation has historically been used.	
Xxfbase	$X_{pu,xfmr} = \sqrt{Z_{xfmr}^2 - R_{pu,xfmr}^2}$	SS-6b
	Shunt Conductance given on the transformer base. Historically	
Gxfbase	neglected.	SS-6b
Dufferer	Shunt Susceptance given on the transformer base. Historically	
Bxfbase	neglected.	SS-6b
Gmagxfbase	Magnetizing Conductance given on the transformer base. Historically neglected.	SS-6b
	Magnetizing Susceptance given on the transformer base. Historically	
Bmagxfbase	neglected.	SS-6b
	Fixed tap ratio on the FROM side on the transformer base	
	$FixedTapFrom = \frac{236.5kV}{236.5kV} = 1.0000pu_{xfmr}$	
TapFixedFrom		SS-6c
	Fixed tap ratio on the TO side on the transformer base $115.5 kV$	
TanEivadTa	$FixedTapTo = \frac{115.5kV}{112.75kV} = 1.0244pu_{xfmr}$	SS-6c
TapFixedTo	Maximum tap ratio on the transformer base	33-00
T	$TapMax = \frac{247.5kV}{236.5kV} = 1.0465pu_{xfmr}$	00.01
TapMaxxfbase	250000	SS-6d
	Minimum tap ratio on the transformer base	
TanMinyfhaaa	$TapMin = \frac{225.5kV}{236.5kV} = 0.9535pu_{xfmr}$	SS-6d
TapMinxfbase	Tap ratio step size on the transformer base	33-0u
TapStepSizexfbase	$Step Size = \frac{(247.5kV - 225.5kV)}{236.5kV \cdot 16} = 0.00581pu_{xfmr}$	SS-6e
ImpCorrTable	Impedance correction table used. Specify 0 if none used.	SS-9
LimitMVAA	Summer Normal Rating of the branch in MVA at 40°C	SS-6g
LimitMVAB	Summer Emergency Rating of the branch in MVA at 40°C	SS-6g
LimitMVAC	Winter Normal Rating of the branch in MVA at 0°C	SS-6g
LimitMVAD	Winter Emergency Rating of the branch in MVA at 0°C	SS-6g

¹ Central Station Engineers of the Westinghouse Electric Corporation. <u>Electrical Transmission and Distribution</u> <u>Reference Book</u>. Fourth Edition. Ch. 5, Section II.

Field	Description	MOD-032-01 Attachment 1
LimitMVAE	Fall Normal Rating of the branch in MVA at 30°C	SS-6g
LimitMVAF	Fall Emergency Rating of the branch in MVA at 30°C	SS-6g
LimitMVAG	Spring Normal Rating of the branch in MVA at 30°C	SS-6g
LimitMVAH	Spring Emergency Rating of the branch in MVA at 30°C	SS-6g
FaultRZero	Zero sequence resistance	SC-1c
FaultXZero	Zero sequence reactance	SC-1c
GICBlock	Specifies whether the transformer has a GIC blocking device which would prevent dc neutral current; either yes if there is one or no otherwise	SS-9
GICCoilRUser	Select to manually enter the transformer coil resistance; used in the GIC calculations	SS-9
GICCoilRFrom	Per phase resistance for transformer High side coil in Ohms	SS-9
GICCoilRTo	Per phase resistance for transformer Medium side coil in Ohms	SS-9
XFConfiguration	Transformer Configuration on High side	SS-9
XFConfiguration:1	Transformer Configuration on Medium side	SS-9
XFConfiguration:2	Transformer Configuration on Low side	SS-9
GICAutoXF	Specifies whether the transformer is an autotransformer. Value can be Unknown, yes, or no	SS-9
GICCoreType	The core type of the transformer. Value can be Unknown, Single Phase, Three Phase Shell, 3-Legged Three Phase, or 5-Legged Three Phase.	SS-9

Table 4:

5.5.1.2. Three Winding Transformer Data

Field	Description	MOD-032-01 Attachment 1
Label	Unique label identifier for this object. Syntax: Station # kV/kV i.e., BEACON 1 230/115kV	SS-9
MVABasePriSec	MVA BasePrimary-Secondary (RbasePriSec and XbasePriSec are given on this MVA Base).	SS-9
MVABaseSecTer	MVA Base Secondary-Tertiary (RbaseSecTer and XbaseSecTer are given on this MVA Base).	SS-9
MVABaseTerPri	MVA Base Tertiary-Primary (RbaseTerPri and XbaseTerPri are given on this MVA Base).	SS-9
RbasePriSec	Per unit resistance Primary-Secondary on MVABasePriSec	SS-6b
XbasePriSec	Per unit reactance Primary-Secondary on MVABasePriSec	SS-6b
RbaseSecTer	Per unit resistance Secondary-Tertiary on MVABaseSecTer	SS-6b
XbaseSecTer	Per unit reactance Secondary-Tertiary on MVABaseSecTer	SS-6b
RbaseTerPri	Per unit resistance Tertiary-Primary on MVABaseTerPri	SS-6b
XbaseTerPri	Per unit reactance Tertiary-Primary on MVABaseTerPri	SS-6b
Gmagbase	Per unit magnetizing conductance (G) on MVABasePriSec	SS-6b
Bmagbase	Per unit magnetizing susceptance (B) on MVABasePriSec	SS-6b
ImpCorrTablePri ImpCorrTableSec ImpCorrTableTer	Impedance correction table used for respective winding. Specify 0 if none used.	
ControlTypePri ControlTypeSec	Control Type of the respective winding of the transformer. Choices are Fixed, LTC, Mvar, Phase. LTC means that a voltage in controlled by moving the transformer tap. Mvar means that the Mvar flow on the branch is controlled by moving the tap ratio. Phase means that the MW flow on the	22.2
ControlTypeTer	branch is controlled by changing the phase shift angle.	SS-9

Field	Description	MOD-032-01 Attachment 1
AutoControlPri AutoControlSec AutoControlTer	Set to either YES or NO to indicate whether automatic transformer control is available for the respective winding. If the ControlType of winding is Phase, then the choice OPF is also available to indicate that the phase angle can be an OPF control variable.	
RegBusNumPri RegBusNumSec		00 af
RegBusNumTer UseLineDropPri UseLineDropSec UseLineDropTer	Regulated Bus Number for respective winding's tapSet to either YES or NONO : Use normal voltage control based on the regulated bus and voltage setpoint.YES : Use line drop compensation voltage control on the respective winding In order to use line drop compensation on the respective winding, the regulated bus must be one of the terminals of the branch. The line drop is then calculated looking out from that branch into the rest of the system.	SS-6f
RcompPri RcompSec RcompTer	Line Drop Compensation resistance value for respective winding used during a contingency power flow solution. Value will be expressed in per unit on the system MVA base.	
XcompPri XcompSec XcompTer NomkVPri	Line Drop Compensation reactance value used during a contingency power flow solution. Value will be expressed in per unit on the system MVA base.	
NomkVSec NomkVTer	Transformer Nominal kV Voltage of the respective winding	SS-6a
TapFixedPri TapFixedSec TapFixedTer	Fixed Tap on transformer voltage kV base for respective winding	SS-6c
TapMaxPri TapMaxSec TapMaxTer TapMinPri	Maximum total tap on transformer voltage kV base for primary	SS-6d
TapMinFri TapMinSec TapMinTer TapStepSizePri	Minimum total tap on transformer voltage kV base for respective winding	SS-6d
TapStepSizeSec TapStepSizeTer	Tap step size on transformer voltage kV base for respective winding	SS-6e
LimitMVAAPri LimitMVAHPri	8 limits AH for the primary winding same as two winding transformer	SS-6g
LimitMVAASec LimitMVAHSec LimitMVAATer	8 limits AH for the secondary winding same as two winding transformer	SS-6g
LimitMVAHTer PriSecFaultRZero	8 limits AH for the secondary winding same as two winding transformer Zero sequence resistance	SS-6g SC-1c
PriSecFaultXZero SecTerFaultRZer	Zero sequence reactance	SC-1c
o SecTerFaultXZer	Zero sequence resistance	SC-1c
o TerPriFaultRZero	Zero sequence reactance Zero sequence resistance	SC-1c SC-1c
TerPriFaultXZero	Zero sequence reactance	SC-1c SC-1c
GICBlock	Specifies whether the transformer has a GIC blocking device which would prevent dc neutral current; either Yes if there is one or No otherwise	SS-9
GICCoilRUser	Select to manually enter the transformer coil resistance; used in the GIC calculations	SS-9
GICCoilRFrom	Per phase resistance for transformer High side coil in Ohms	SS-9

Field	Description	MOD-032-01 Attachment 1
GICCoilRTo	Per phase resistance for transformer Medium side coil in Ohms	SS-9
XFConfiguration	Transformer Configuration	SS-9
	Specifies whether the transformer is an autotransformer. Value can be	
GICAutoXF	Unknown, Yes, or No	SS-9
	The core type of the transformer. Value can be Unknown, Single Phase,	
GICCoreType	Three Phase Shell, 3-Legged Three Phase, or 5-Legged Three Phase.	SS-9

Table 5:

5.5.2. Dynamic

See Section 5.3.2.

5.6. Shunt Data

Shunt data shall be used to represent the following devices explicitly for power system modeling:

- Mechanically switched shunt capacitors and reactors
- Static VAR compensators
- STATCOMs
- Thyristor-switched shunt capacitors and reactors.

The requested data is listed in the below tables. The description for each field shall be followed.

Level of Detail: Each BES shunt connected device. Multiple stages of devices shall be represented as Blocks within the same object record.

Field	Description	MOD-032-01 Attachment 1
	Unique label identifier for this object. Syntax: Station Type (R or C)	
Label	ShuntID/ i.e., NOXON RAPIDS REACTOR STATION R2	SS-9
	Specify the type of control mode for this shunt. The choices are	
	Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this	
	table it is expected that none of the entries will be Bus Shunt as those	
ShuntMode	are stored in another table.	SS-7c
	Set to YES to use the ContinuousMvarNomMax and	
	ContinuousMvarNomMin when the ShuntMode is set to Discrete or	
ContinuousUse	Continuous	SS-8
	Minimum Nominal Mvar of the continuous element. This value is used	
	with Discrete or Continuous ShuntMode when ContinuousUse = YES.	
	It is also used when ShuntMode = SVC if the SVCType = SVSMO1 or	
ContinousMvarNomMax	SVSMO3	SS-8
	Minimum Nominal Mvar of the continuous element. This value is used	
	with Discrete or Continuous ShuntMode when ContinuousUse = YES.	
	It is also used when ShuntMode = SVC if the SVCType = SVSMO1 or	
ContinousMvarNomMin	SVSMO3	SS-8
BlockNumberStep1	Number of equal nominal Mvar steps for block 1	SS-7a
BlockMvarPerStep1	Nominal Mvar per step for block 1	SS-7a
BlockNumberStep2	Number of equal nominal Mvar steps for block 2	SS-7a
BlockMvarPerStep2	Nominal Mvar per step for block 2	SS-7a
BlockNumberStep3	Number of equal nominal Mvar steps for block 3	SS-7a
BlockMvarPerStep3	Nominal Mvar per step for block 3	SS-7a
BlockNumberStep4	Number of equal nominal Mvar steps for block 4	SS-7a

TP-SPP-04 Data for Power System Modeling and Analysis

2024

Field	Description	MOD-032-01 Attachment 1
BlockMvarPerStep4	Nominal Mvar per step for block 4	SS-7a
BlockNumberStep5	Number of equal nominal Mvar steps for block 5	SS-7a
BlockMvarPerStep5	Nominal Mvar per step for block 5	SS-7a
BlockNumberStep6	Number of equal nominal Mvar steps for block 6	SS-7a
BlockMvarPerStep6	Nominal Mvar per step for block 6	SS-7a
BlockNumberStep7	Number of equal nominal Mvar steps for block 7	
BlockMvarPerStep7	Nominal Mvar per step for block 7	SS-7a
BlockNumberStep8	Number of equal nominal Mvar steps for block 8	
BlockMvarPerStep8	Nominal Mvar per step for block 8	SS-7a SS-7a
BlockNumberStep9	Number of equal nominal Mvar steps for block 9	SS-7a
BlockMvarPerStep9	Nominal Mvar per step for block 9	SS-7a
BlockNumberStep10	Number of equal nominal Mvar steps for block 10	SS-7a
BlockMvarPerStep10	Nominal Mvar per step for block 10	SS-7a
SVCType	When ShuntMode = SVC, then this specifies the type of the SVC. Choices are None, SVSMO1, SVSMO2, and SVSMO3	SS-8
	SVC control compensating reactance. This works very similarly to line	
SVCXcomp	drop compensation for both generator and transformer control.	SS-8
SVCMvarNomMaxSH	Maximum of Nominal Mvar range in which remote shunts are not switched. Value is expressed in nominal Mvar which represent what the Mvar would be at 1.0 per unit voltage.	SS-8
SVCMvarNomMinSH	Minimum of Nominal Mvar range in which remote shunts are not switched. Value is expressed in nominal Mvar which represent what the Mvar would be at 1.0 per unit voltage.	SS-8
SVCstsb	YES/NO status. For SVCType = SVSMO1 and SVSMO2, set this to YES to enable the Slow B Control. For SVCType = SVSMO3, set this to YES to enable the Ireset or deadband control	SS-8
SVCMvarNomMaxSB	Maximum of Nominal Mvar range for SVCType = SVSMO1 and SVSMO2 for Slow B Control. Not used with SVCType = SVSMO3	SS-8
SVCMvarNomMinSB	Minimum of Nominal Mvar range for SVCType = SVSMO1 and SVSMO2 for Slow B Control. Not used with SVCType = SVSMO3	SS-8
SVCVrefmax	Voltage Range Maximum for the Slow B Control used with SVCType = SVSMO1 and SVSMO2.	
SVCVrefmin	Voltage Range Minimum for the Slow B Control used with SVCType = SVSMO1 and SVSMO2.	SS-8
SVCdvdb	Voltage Sensitivity for a change in Injection. Units are Per unit SVCdvdb Voltage / Per unit B	
CTGRegHigh	Lowest high voltage threshold for automatic insertion	SS-7b
CTGRegLow	Highest low voltage threshold for automatic insertion	SS-7b

Table 6: Shunt Data Requirements

6. Generator Owner Data Requirements

6.1. Substation Data

The requested data is listed in the tables provided in Section 5.2. The description for each field shall be followed.

Level of Detail: Each BES station owned by each Generator Owner.

6.2. Generator Data

The requested data is listed in the below table for steady state data and Section 6.2.2 for dynamic data. The description for each field shall be followed.

Level of Detail: Data shall be provided for generators which meet the following WECC Generator Unit Model Validation Guideline.

- If the individual generator unit capacity is 10MVA or larger and is connected to the transmission system at 60kV or higher then steady-state data and dynamics data should be submitted for each generator.
- If the aggregated generator unit capacity is 20MVA or larger and is connected to the transmission system at 60kV or higher and is not a collector-based generation facility, then steady-state data and dynamics data should be submitted for each generator. (Wind and solar farms are an example of a collector-based generation facility.)
- If the aggregated generation capacity is 20MVA or larger and is connected to the transmission system at 60kV or higher and is a collector-based generation facility, then steady-state data and dynamics data should be submitted for the aggregated generation capacity as a single-unit generator model. An example of the equivalent representation is shown in Figure 3. Wind and solar farms are an example of a collector-based generation facility.

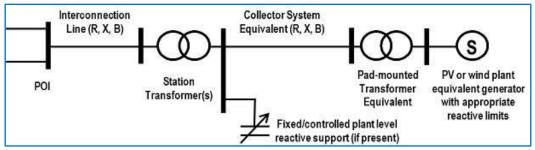


Figure 3: Generator Equivalence Model

• All other generating facilities shall either be netted with bus load and steady-state data should be submitted according to Section 8.1.

6.2.1. Steady State

Field	Description	MOD-032-01 Attachment 1
Label	Unique label identifier for this object. Syntax: Station "UN" UnitID. i.e. NOXON RAPIDS HED UN5	SS-9
VoltSet	Desired per unit voltage setpoint at the regulated bus	SS-3d from TOP

Field	Description	MOD-032-01 Attachment 1
RegBusNum	Number of regulated bus	SS-9
RegFactor	Remote regulation factor. When multiple buses have generation that control the voltage at a single bus, this determines the ratio in which the Mvar output is shared.	SS-9
MWMax	 Generator's maximum MW limit (step 5 of Verification specifications within MOD-24-2 Attachment 1). Provide the maximum of the following: Peak Summer – ambient temperature 40°C, July 15 to August 15 Peak Winter – ambient temperature 0°C, December 15 to January 31 For hydroelectric generators, report the instantaneous capacity at maximum water flow. 	SS-3a
MWMin	Generator's minimum MW limit	SS-3a
AVR	Set to YES or NO to specify if the generator is available for AVR	SS-9
MvarMax	Generator's maximum Mvar limit	SS-3b
MvarMin	Generator's minimum Mvar limit	SS-3b
UseCapCurve	Indicates if the generator should use its Mvar capability curve if it has one defined. (See table below for description of capability curve data requirements.)	SS-9
WindContMode	Special Var limit modes of either "None", "Boundary Power Factor" or "Constant Power Factor". When not equal to None, the Var limit magnitudes are determined from the real power output and the Wind Control Mode Power Factor value. For Boundary mode, the maximum limit is positive, and the minimum limit is negative. For Constant mode, minimum limit = maximum limit, a positive Wind Control Mode Power Factor means the limits have the same sign as the real power, and a negative Wind Control Mode Power Factor means the limits are the opposite sign as the real power.	SS-9
WindContModePF	This is the power factor value used with the Wind Control Mode. Magnitude of the value must be between 0.01 and 1.00. Negative values are important when the Wind Control Mode is "Constant Power Factor".	SS-9
UseLineDrop	Field describing if the generator uses line drop/reactive current compensation control	SS-9
Rcomp	Generator's Line Drop Compensation resistance in per unit on the system MVA Base	SS-9
Xcomp	Generator's Line Drop Compensation reactance in per unit on the system MVA Base	SS-9
MVABase	Generator's MVA base	SS-3e
GenSeqR+	Machine Positive Sequence Resistance in per unit on Generator MVA Base	SC-1a
GenSeqR-	Machine Negative Sequence Resistance in per unit on Generator MVA Base	SC-1b
GenSeqR0	Machine Zero Sequence Resistance in per unit on Generator MVA Base	SC-1c
GenSeqX+	Machine Positive Sequence Reactance in per unit on Generator MVA Base	SC-1a
GenSeqX-	Machine Negative Sequence Reactance in per unit on Generator MVA Base	SC-1b
GenSeqX0	Machine Zero Sequence Reactance in per unit on Generator MVA Base	SC-1c
GovRespLimit	Specifies how governors respond in transient stability simulation. The choices are Normal, Down Only, or Fixed.	SS-9

Field	Description	MOD-032-01 Attachment 1
Field UnitTypeCode	Description Two-Character Field describing what kind of machine the generator is. The choices are informed by the Energy Information Agency of US Department of Energy. There is an EIA Form 860 for the Annual Electric Generator Report. The choices are the first two characters of the following list. Also note that in square brackets are the integer code that will be written to an EPC file. UN (Unknown) [0] BA (Energy Storage, Battery) [99] BT (Turbines Used in a Binary Cycle, including those used for geothermal applications) [99] CA (Combined Cycle Steam Part) [2] CC (Combined Cycle Generic) [4] CE (Compressed Air Storage) [99] CP (Energy Storage, Concentrated Solar Power) [99] CS (Combined Cycle Single Shaft) [13] CT (Combined Cycle Combustion Turbine Part) [3] DC (represents DC ties) [40] ES (Energy Storage, Other) [99] FC (Fuel Cell) [99] FC (Fuel Cell) [99] FW (Energy Storage, Flywheel) [99] FG (Gas Turbine) [11] HA (Hydrokinetic, Axial Flow Turbine) [99] HB (Hydrokinetic, Other) [99] HY (Hydro) [5] IC (Internal Combustion Turbo Charged) [7] JE (Jet Engine) [12] MP (Motor/Pump)	MOD-032-01 Attachment 1
	OT (Other) [99] PS (Hydro Pumped Storage) [5 same as HY] PV (Photovoltaic) [31] SC (Synchronous Condenser) [14] ST (Steam Turbine) [1]	
	W1 (Wind Turbine, Type 1) [21] W2 (Wind Turbine, Type 2) [22] W3 (Wind Turbine, Type 3) [23] W4 (Wind Turbine, Type 4) [24] WS (Wind Turbine, Offshore) [20 same WT] WT (Wind Turbine) [20]	SS-3g
BANumber	It is possible for the terminal bus to belong to a different balancing authority than the device belongs. This is the Balancing Authority number of the Generator. When reading this field, if a balancing authority does not already exist with this number, then a new balancing authority will automatically be created.	SS-9
	Table 7: Steady State Data Requirements	

 Table 7:
 Steady State Data Requirements

The below table describes a single reactive capability curve entry. Each generator should provide at a minimum two table entries: 1) minimum and maximum MVAr at maximum MW and 2) minimum and maximum MVAr at minimum MW. (SS-3b)

Description	MOD-032-01 Attachment 1
Unique label identifier for this object. Syntax: Station "UN" UnitID. i.e.,	SS-9
	55-9
(rounded to the nearest 0.001MW)	SS-9
Maximum Mvar output at respective MW output	SS-3b
Minimum Mvar output at respective MW output	SS-3b
	Unique label identifier for this object. Syntax: Station "UN" UnitID. i.e., NOXON RAPIDS HED UN5 *KEY3* MW output at which MvarMin and MvarMax are specified (rounded to the nearest 0.001MW) Maximum Mvar output at respective MW output

Table 8: Reactive Capability Data Requirements

6.2.2. Dynamic

Generator dynamic data shall be provided by Generator Owners according to TP-SPP-12 – Generator Data Verification.

6.3. Shunt Data

The requested data is listed in the tables provided in Section 5.6. The description for each field shall be followed.

Level of Detail: Each BES shunt connected device. Multiple stages of devices shall be represented as Blocks within the same object record.

6.4. Generator Step Up Transformer Data

The requested data is listed in the tables provided in Section 5.5. The description for each field shall be followed. (SS-3f)

Level of Detail: Each BES transformer. Transformers with three windings where the third winding does not have a connected device (other than station service) can be represented as a two-winding transformer.

6.5. Generator Lead Line data

The requested data is listed in the tables provided in Section 5.3. The description for each field shall be followed.

Level of Detail: Each generator lead line exceeding 0.1 miles shall be provided.

6.6. Station Service Load data

The requested data is listed in the tables provided in Section 8.1. The description for each field shall be followed. (SS-3c)

Level of Detail: Station service at modeled generation facilities with station service load greater than or equal to 1MW.

7. Resource Planner Data Requirements

The requested data for future generators is listed in the tables provided in Section 6. The description for each field shall be followed.

Level of Detail: Each future generator, generator step up transformer, generator lead line and station service which meets the level of detail specified in Section 6.

8. Distribution Provider Data Requirements

8.1. Load Data

The Transmission Planner function will fulfill the requirements of Distribution Provider for modeling load. See Section 9.5.

8.2. Distribution Transformer Data

(Future requirement)

The requested data is listed in the tables provided in Section 5.5. The description for each field shall be followed. (SS-3f)

Level of Detail: Each distribution transformer used to change voltage from transmission level to distribution level. Transformers with three windings where the third winding does not have a connected device (other than station service) can be represented as a two-winding transformer.

9. Transmission Planner Data Requirements

Data collected from the applicable entities through the process outlined in Section 3 will be used by the Transmission Planning function to develop a power system model. The following sections outline the complete data set necessary to represent each object type in a power system model. Transmission Planning personnel are expected to have sufficient expertise in using power system modeling and analysis software and expertise in the present process to develop interconnection-wide base cases to understand the application of the following sections.

Field	Description	Desired Value	Source
		The substation name shall not	
	SECONDARY KEY1 Name of	include the voltage class unless	
	the station. A string of any length is	it is specifically stated as part of	
Name	permitted.	the official substation name.	TO/GO
		48000-49999	
Number	*KEY1* Number	480000-499999	TP
	Geographic Latitude in decimal		
Latitude	degrees.		TO/GO
	Geographic Longitude in decimal		
Longitude	degrees.		TO/GO
Longhado			10,00
	Name of the DataMaintainer	"A	тр
DataMaintainerAssign	specifically assigned to this object.	"Avista"	TP
	Three- or four-letter abbreviation		
IDExtra	for station		TO/GO
	Resistance [in Ohms] between the		
RGround	substation neutral and ground.		TO/GO

9.1. Substation Data

Table 9: Substation Data Requirements

9.2. Bus Data

Field	Description	Desired Value	Source
AllLabels	A comma-delimited list of unique label identifiers for this object.		TO, TP
Number	*KEY1* Number	48000-49999 480000-499999	TP
Name	Name	Follow the naming convention used in the field	TP
NomkV	The nominal kV voltage specified as part of the input file.	230, 115, 13.8, etc	TP
Slack	YES or NO. Set to YES to indicate that this bus should be the island slack bus.	"NO"	TP
	Nominal MW from extra shunt admittance at the bus (Mvar when operating at 1.0 per unit voltage). Positive values represent <i>load</i> . This is meant to represent fictitious injections such as created by an equivalencing routine or the state estimator mismatch as read from a state		
NomG	estimator solution.	"O"	TP
	Nominal Mvar from extra shunt admittance at the bus (Mvar when operating at 1.0 per unit voltage). Positive values represent <i>generation</i> . This is meant to represent fictitious injections such as created by an equivalencing routine or the state estimator mismatch as		
NomB	read from a state estimator solution.The per unit voltage magnitude. A value	"0"	TP
Vpu	of 1.0 means the actual kV is equal to the nominal kV	NA	Software
Vangle	Voltage: Angle (degrees)	NA	Software
	Only used when solving a DC power flow using the DC approximation solution option. This then specifies a multiplier at the bus used during the DC power flow solution. All loads at the bus will be artificially increased by this multiplier when calculating load MWs during the DC		
DCLossMultiplier	power flow.	1	TP
ArooNumber	Number of the Area. Must be a positive integer value. Must be specified, so blank values are not permitted. When reading this field, if an area does not already exist with this number, then a new area will automatically be created	40	TP
AreaNumber	automatically be created.	Shall be used to distinguish the	117
ZoneNumber	Number of the Zone. Must be a positive integer value. Must be specified, so blank values are not permitted. When reading this field, if a zone does not already exist with this number, then a new zone will automatically be created.	 designated regions within Avista's BAA as indicated on Avista's System Data 60-115-230kV Interconnected System One Line Diagram 440 AVA: Borderline on BPA 441 AVA: Coeur d'Alene 	TP

Field	Description	Desired Value	Source
		• 442 AVA:	
		• 443 AVA:	
		• 444 AVA:	
		Lewiston/Clarkston	
		 445 AVA: Big Bend 	
		446 AVA: Palouse	
		 447 AVA: Spokane 	
		448 AVA: Pend Oreille	
		PUD	
		• 449 AVA:	
	Number of the Balancing Authority. Must		
	be a positive integer value. Must be		
	specified, so blank values are not		
	permitted. When reading this field, if a		
	balancing authority does not already exist		
	with this number, then a new balancing		
BANumber	authority will automatically be created.	29	TP
	Number of the Owner to which the bus is	Refer to WECC Master Tie Line	
OwnerNumber	assigned	File	TP
	Substation Number. Must be a positive		
	integer value. When reading this field, if a		
	substation does not already exist with this		
	number, then a new zone will	48000-49999	
SubNumber	automatically be created.	480000-499999	TP
	Set to YES to specify that this bus should		
	be monitored. Set to NO to not monitor		
Monitor	this bus.	Refer to TP-SPP-06	TP
	Name of the Limit Set to which the bus		
LimitSet	belongs	Refer to TP-SPP-06	TP
	Set to YES to specify specific limits for		
	this bus in the format. When set to NO the		
	limits will be obtained from the LimitSet		
UseSpecificLimits	objects instead	Refer to TP-SPP-06	TP
LimitLowA	A low voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitLowB	B low voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitLowC	C low voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitLowD	D low voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitHighA	A high voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitHighB	B high voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitHighC	C high voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
LimitHighD	D high voltage limit of the bus in per unit	Refer to TP-SPP-06	TP
Latitude	Geographic Latitude in decimal degrees.	Populate from Substation Record	TP
	Geographic Longitude in decimal		
Longitude	degrees.	Populate from Substation Record	TP
	Type of electrical connection point.	•	
	Choices are BusBarSection, Junction,		
TopologyBusType	Internal_3WND, and Ground.		TP
	Integer priority used when choosing the		
	primary node within a Superbus. Higher		
	numbers have priority over lower		
Priority	numbers.		TP
EMSType	Record type read from an EMS system	NA	TP
EMSID	String ID for node used in EMS systems	NA	TP
	Name of the DataMaintainer specifically	Blank – inherit from Substation	
DataMaintainerAssign	assigned to this object. This can be blank	object	TP

as well. For objects which inherit their	
DataMaintainer this will still be blank. Note: For the internal bus of a three- winding transformer, this value cannot be specified, and any entry here will be ignored. The DataMaintainer will always be inherited from the three-winding transformer record.	

Table 10: Bus Data Requirements

9.3. Transmission Line (Branch) Data

Field	Description	Desired Value	Source
	A comma-delimited list of unique label identifiers		
AllLabels	for this object.		TO/TP
	KEY1 Number of the from bus.		
Dua Num Francis	When reading record, see special note in Section	48000-49999	тр
BusNumFrom		480000-499999	TP
	KEY2 Number of the TO bus. When reading record, see special note in Section	48000-49999	
BusNumTo	2.4.	48000-499999	TP
Dushuillio	*KEY3* Two-character ID of the branch. This	400000-4999999	
	identifier must be unique regardless of whether		
Circuit	the branch is a transformer or a non-transformer.		TP
	Field can have the following entries: Line,		
	Transformer, Series Cap, Breaker, Disconnect,		
	ZBR, Fuse, Load Break Disconnect, or Ground		
	Disconnect. This enumeration of device types		
	comes from the Common Information Model (CIM)		
	specification, except that a ZBR is called a		
	Jumper in CIM. In general, a user may toggle		
	between these various device types except for a		
	Transformer. Once an object is specified as a		
	transformer it may not be turned back into another		TD
BranchDeviceType	branch device type.		TP
		"YES" - All devices	
		except bus tie breakers	
	YES or NO. Set to YES to allow this branch to be	"NO" – Bus tie	
ConsolidateAllow	consolidated in the integrated topology processing	breakers	TP
	Status of the branch. Set to either OPEN or	broaktoro	
Status	CLOSED		TP
	Normal status of the branch. Set to either OPEN		
StatusNormal	or CLOSED		TO/GO
	Set to YES to bypass the branch and treat it as a		
	minimum series impedance (0.0000001 +		
ByPass	j0.00001)	"NO"	TP
	Specify either FROM or TO. Represents the end		
	of the transmission line which is metered when		
	used as a tie-line between areas, zones, or		
	balancing authorities. The end of the line which is		
MeteredEnd	not metered will be responsible for the losses on the line.		TP
MELEIEUEIIU	Series Resistance of the branch in per unit on the		
R	system MVABase and the nominal kV of the from		TO/GO
	system www.dase and the normal ky of the horn		10/00

Field	Description	Desired Value	Source
	bus		
	Series Reactance of the branch in per unit on the		
	system MVABase and the nominal kV of the from		
Х	bus		TO/GO
	Shunt Susceptance of the branch in per unit on		
	the system MVABase and the nominal kV of the		
В	from bus		TO/GO
	Shunt Conductance of the branch in per unit on		
	the system MVABase and the nominal kV of the	"0"	TD
G	from bus	"O"	TP
LineLength	Length of the line in miles.		TO/GO
Manitar	Set to YES to specify that this branch should be	Defer to TD CDD 00	тр
Monitor	monitored. Set to NO to not monitor this branch.	Refer to TP-SPP-06	TP
LimitCat	Name of the Limit Set to which the branch	Refer to TP-SPP-06	тр
LimitSet	belongs	Relei lo TP-SPP-00	TP
LimitAMPA	Summer Normal Rating of the branch in AMP at 40°C		TO/GO
	Summer Emergency Rating of the branch in AMP		10/60
LimitAMPB	at 40°C		TO/GO
LimitAMPC	Winter Normal Rating of the branch in AMP at 0°C		TO/GO
	Winter Emergency Rating of the branch in AMP at 0 C		10/60
LimitAMPD			TO/GO
LimitAMPE	Fall Normal Rating of the branch in AMP at 30°C		T0/G0
	Fall Emergency Rating of the branch in AMP at		10/00
LimitAMPF	30°C		TO/GO
	Spring Normal Rating of the branch in AMP at		10,00
LimitAMPG	30°C		TO/GO
	Spring Emergency Rating of the branch in AMP at		
LimitAMPH	30°C		TO/GO
LimitMVAI	I Rating of the branch in MVA	"0"	TP
LimitMVAJ	J Rating of the branch in MVA	"0"	TP
LimitMVAK	K Rating of the branch in MVA	"0"	TP
LimitMVAL	L Rating of the branch in MVA	"0"	TP
LimitMVAM	M Rating of the branch in MVA	"0"	TP
LimitMVAN	N Rating of the branch in MVA	"0"	TP
LimitMVAO	O Rating of the branch in MVA	"0"	TP
	Owner Number 1. May also be listed as blank to		
	indicate that the owner is the same as the owner		
OwnerNum1	of from bus.		TP
OwnerPerc1	Owner 1 Percent		TP
OwnerNum2	Owner Number 2		TP
OwnerPerc2	Owner 2		TP
OwnerNum3	Owner Number 3		TP
OwnerPerc3	Owner 3		TP
OwnerNum4	Owner Number 4		TP
OwnerPerc4	Owner 4		TP
OwnerNum5	Owner Number 5		TP
OwnerPerc5	Owner 5		TP
OwnerNum6	Owner Number 6		TP
OwnerPerc6	Owner 6		TP
OwnerNum7	Owner Number 7		TP
OwnerPerc7	Owner 7		TP
OwnerNum8	Owner Number 8		TP
OwnerPerc8	Owner 8		TP

Field	Description	Desired Value	Source
EMSType	Record type read from an EMS system		TP
EMSID	String ID for branch used in EMS systems		TP
EMSLineID	String ID for group container in EMS system		TP
EMSCBTyp	String ID for switch type in EMS System		TP
EMSID2From	String ID for the FROM bus side measurement object in EMS System		TP
EMSID2To	String ID for the TO bus side measurement object in EMS System		TP
DataMaintainerAssign	Name of the DataMaintainer specifically assigned to this object. This can be blank as well. For objects which inherit their DataMaintainer this will still be blank.	Blank – Inherit from Substation object	TP
FaultRZero	Zero sequence resistance of the branch in per unit on the system MVABase and the nominal kV of the from bus		TO/GO
FaultXZero	Zero sequence reactance of the branch in per unit on the system MVABase and the nominal kV of the from bus		TO/GO
ConductorType	Conductor size, material, and code name. i.e., 795 ACSS Drake		TO/GO
TowerConfiguration	Typical structure type		TO/GO

Table 11: Transmission Line Data Requirements

9.4. Transformer Data

Impedance values provided on transformer test reports are given on the transformer bases. Conversion of the values to system base should be left up to the software programs. PowerWorld, PSS/E and PSLF model transformer impedance on the "TO" side of the model. The software programs convert parameters entered in transformer base to the system base values. If the fixed tap ratio is something other than unity, the side of the model the impedance is modeled on is very important. Multiplying by the square of the turns ratio (or inverse of turns ratio depending on direction) is required to transpose the impedance model from the "FROM" side to the "TO" side. Using the following table, which utilizes the software to perform necessary calculations, reduces the potential for base conversion errors and miscalculations of parameters related to tap positions. For consistency, the high voltage winding should be modeled at the "FROM" side of the transformer. This convention will also correctly account for the load tap changing ability of autotransformers.

If test reports are not available, the resistance calculation can be made with the assumption that the inductive reactance (i.e., X) to resistance (i.e., R) ratio is equal to 30 which is approximately equivalent to the total impedance to resistance ratio of 30. This assumption has been compared to the average results given from the test reports and proves to be an adequate representation. Note that the charging susceptance (i.e., B) associated with a transformer is negligible and therefore it is assumed to be zero.

Refer to Section 12 for example transformer test reports and sample calculations.

9.4.1. Two Winding Transformer

Field	Description	Desired Value	Source
	A comma-delimited list of unique label identifiers for		
	this object. The syntax for this field is described in		
AllLabels	detail in Section 2.3.4.		TO/TP
		48000-49999	
BusNumFrom	*KEY1* Number of the FROM bus	480000-499999	TP
		48000-49999	
BusNumTo	*KEY2* Number of the TO bus	480000-499999	TP
	KEY3 Two-character ID of the branch. This identifier		
Circuit	must be unique regardless of whether the branch is a transformer or a non-transformer.		тп
		"Transformer"	TP
BranchDeviceType	Will always be Transformer	Transformer	TP
Status	Status of the branch. Set to either OPEN or CLOSED		TP
StatusNormal	Normal status of the branch. Set to either OPEN or CLOSED		TO/GO
Statushormai	Set to YES to bypass the branch and treat it as a		10/60
	minimum series impedance (0.0000001 + j0.00001).		
	Note this should not be used with a Transformer		
	Branch, but in some circumstances while using		
ByPass	software it may be convenient to have this field.	"NO"	TP
·	End of the transmission line which is metered when		
	used as a tie-line between areas, zones, or balancing		
	authorities. The end of the line which is not metered will		
MeteredEnd	be responsible for the losses on the line.		TP
	Control Type of the transformer. Choices are Fixed,		
	LTC, Mvar, Phase. LTC means that a voltage in		
	controlled by moving the transformer tap. Mvar means		
	that the Mvar flow on the branch is controlled by		
	moving the tap ratio. Phase means that the MW flow on		
ControlType	the branch is controlled by changing the phase shift angle.		TO/GO
Controllype	Set to either YES or NO to indicate whether automatic		10/00
	transformer control is available for this branch. If the		
	ControlType = Phase, then the choice OPF is also		
	available to indicate that the phase angle can be an		
AutoControl	OPF control variable.		TO/GO
	Regulated Bus Number. Only used for the ControlType		
RegBusNum	= LTC		TO/GO
	Set to either YES or NO		
	NO : Use normal voltage control based on the		
	regulated bus and voltage setpoint.		
	YES : Use line drop compensation voltage control		
	always, including in the power flow solution. In order to use line drop compensation, the regulated		
	bus must be one of the terminals of the branch. The		
	line drop is then calculated looking out from that branch		
UseLineDrop	into the rest of the system.		TO/GO
	Line Drop Compensation resistance value used during		
	a contingency power flow solution. Value will be		
Rcomp	expressed in per unit on the system MVA base.		TO/GO
	Line Drop Compensation reactance value used during		
	a contingency power flow solution. Value will be		
Xcomp	expressed in per unit on the system MVA base.		TO/GO
RegMax	Maximum desired regulated value for control		TP
RegMin	Minimum desired regulated value for control		TP

Field	Description	Desired Value	Source
	Target Type for the control when going outside of the		
	RegMax and RegMin values. Choices are		
	1. Middle		
D	2. Max/Min	"A 4: -I -II - "	тр
RegTargetType	M/A Deep on which the transformer immediance	"Middle"	TP
	MVA Base on which the transformer impedances		
XFMVABase	(Rxfbase, Xxfbase, Gxfbase, Bxfbase, Gmagxfbase, Bmagxfbase) are given.		TO/GO
XFNomkVbaseFrom	Transformer's Nominal Voltage base for the FROM bus		T0/G0
XFNomkVbaseTo	Transformer's Nominal Voltage base for the TO bus		TO/GO
Rxfbase	Resistance given on the transformer base		TO/GO
Xxfbase	Reactance given on the transformer base		TO/GO
Gxfbase	Shunt Conductance given on the transformer base		TO/GO
Bxfbase	Shunt Susceptance given on the transformer base		TO/GO
DXIDASE			10/60
Gmagxfbase	Magnetizing Conductance given on the transformer base		TO/GO
Gillayxibase			10/60
Bmagxfbase	Magnetizing Susceptance given on the transformer base		TO/GO
ыпаульазе	Fixed tap ratio on the FROM side on the transformer		10/80
TapFixedFrom	base		TO/GO
TapFixedTo	Fixed tap ratio on the TO side on the transformer base		T0/G0
TapMaxxfbase	Maximum tap ratio on the transformer base		T0/G0
TapMinxfbase	Minimum tap ratio on the transformer base		T0/G0
TapStepSizexfbase	Tap ratio step size on the transformer base		TO/GO
Таротероідехівазе			Softwar
Tapxfbase	Present tap ratio on the transformer base	NA	e
Тарлівазе			Softwar
Phase	Phase Shift Angle	NA	e
1 11000	Impedance correction table used. Specify 0 if none		Ŭ
ImpCorrTable	used.		TO/GO
	Length of the branch. Field has limited value for a		
	transformer but is included to be helpful as branches all		
LineLength	have a LineLength.	"0"	TP
	Set to YES to specify that this branch should be	Refer to TP-SPP-	
Monitor	monitored. Set to NO to not monitor this branch.	06	TP
		Refer to TP-SPP-	
LimitSet	Name of the Limit Set to which the branch belongs	06	TP
LimitMVAA	A Rating of the branch in MVA		TO/GO
LimitMVAB	B Rating of the branch in MVA		TO/GO
LimitMVAC	C Rating of the branch in MVA		TO/GO
LimitMVAD	D Rating of the branch in MVA		TO/GO
LimitMVAE	E Rating of the branch in MVA		TO/GO
LimitMVAF	F Rating of the branch in MVA		TO/GO
LimitMVAG	G Rating of the branch in MVA		TO/GO
LimitMVAH	H Rating of the branch in MVA		TO/GO
LimitMVAI	I Rating of the branch in MVA	"0"	TP
LimitMVAJ	J Rating of the branch in MVA	"0"	TP
LimitMVAK	K Rating of the branch in MVA	"0"	TP
LimitMVAL	L Rating of the branch in MVA	"0"	TP
LimitMVAL	M Rating of the branch in MVA	"0"	TP
		"O" "O"	TP TP
LimitMVAM	N Rating of the branch in MVA	•	
LimitMVAM LimitMVAN		"0"	TP

Field	Description	Desired Value	Source
OwnerNum2	Owner Number 2		TP
OwnerPerc2	Owner 2		TP
OwnerNum3	Owner Number 3		TP
OwnerPerc3	Owner 3		TP
OwnerNum4	Owner Number 4		TP
OwnerPerc4	Owner 4		TP
OwnerNum5	Owner Number 5		TP
OwnerPerc5	Owner 5		TP
OwnerNum6	Owner Number 6		TP
OwnerPerc6	Owner 6		TP
OwnerNum7	Owner Number 7		TP
OwnerPerc7	Owner 7		TP
OwnerNum8	Owner Number 8		TP
OwnerPerc8	Owner 8		TP
EMSType	Record type read from an EMS system		TP
EMSID	String ID for branch used in EMS systems		TP
EMSLineID	String ID for group container in EMS system		TP
EMSCBTyp	String ID for switch type in EMS System		TP
	String ID for the FROM bus side measurement object		
EMSID2From	in EMS System		TP
	String ID for the TO bus side measurement object in		
EMSID2To	EMS System		TP
	Name of the DataMaintainer specifically assigned to		
	this object. This can be blank as well. For objects which		
	inherit their DataMaintainer this will still be blank. Note:		
	For the windings a three-winding transformer, this		
	value cannot be specified, and any entry here will be		
	ignored. The DataMaitainer will always be inherited	Blank – Inherit from	-
DataMaintainerAssign	from the three-winding transformer record.	Substation object	TP
	Zero sequence resistance of the branch in per unit on		
	the system MVABase and the nominal kV of the from	00.44	TO/CO
FaultRZero	bus	SC-1c	TO/GO
	Zero sequence reactance of the branch in per unit on		
FaultXZero	the system MVABase and the nominal kV of the from bus	SC-1c	TO/GO
	Specifies whether the transformer has a GIC blocking	30-10	10/60
	device which would prevent dc neutral current; either		
GICBlock	yes if there is one or no otherwise		TO/GO
	Select to manually enter the transformer coil		10/00
GICCoilRUser	resistance; used in the GIC calculations		TO/GO
	Per phase resistance for transformer High side coil in		
GICCoilRFrom	Ohms		TO/GO
	Per phase resistance for transformer Medium side coil		
GICCoilRTo	in Ohms		TO/GO
XFConfiguration	Transformer Configuration		TO/GO
~	Specifies whether the transformer is an		
	autotransformer. Value can be either Unknown, Yes or		
GICAutoXF	No		TO/GO
	The core type of the transformer. Value can be		
	Unknown, Single Phase, Three Phase Shell, 3-Legged		
GICCoreType	Three Phase, or 5-Legged Three Phase.		TO/GO

9.4.2. Three Winding Transformer

Three winding transformers are represented by an equivalent model shown in the figure below. In this model the intermediate bus is labeled a "star" bus and shall be set to a nominal voltage of 1kV as it is a fictitious bus only used for modeling purposes. Test reports will provide impedance values between two specific windings. These values then need to be converted to fit into the equivalent model.

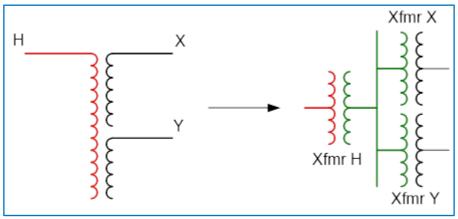


Figure 4: Three Winding Transformer Equivalence Model

Field	Description	Desired Value	Source
	A comma-delimited list of unique label identifiers for		
	this object. The syntax for this field is described in		
AllLabels	detail in Section 2.3.4.		TO/TP
	KEY1 Number of the primary bus. When reading	48000-49999	
BusIDPri	record, see special note in Section 2.4.	480000-499999	TP
	KEY2 Number of the secondary bus. When reading	48000-49999	
BusIDSec	record, see special note in Section 2.4.	480000-499999	TP
	KEY3 Number of the tertiary bus. When reading	48000-49999	
BusIDTer	record, see special note in Section 2.4.	480000-499999	TP
Circuit	*KEY4* Two-character ID of the branch		TP
		48000-49999	
BusIDStar	Number of the star bus.	480000-499999	TP
StatusPri			
StatusSec	Status of the primary, secondary and tertiary winding.		
StatusTer	Either OPEN or CLOSED		TP
	Specify either FROM or TO. FROM means the		
	terminal of the primary, secondary, or tertiary of the		
	3WXformer, while TO means the internal star bus.		
MeteredEndPri	This indicates the end of the branch which is metered		
MeteredEndSec	when used as a tie-line between areas, zones, or		
MeteredEndTer	balancing authorities.		TP
	MVA BasePrimary-Secondary (RbasePriSec and		
	XbasePriSec are given on this MVA Base). If a zero or		
	negative value is specified for this field, then the value		
MVABasePriSec	is set equal to the System MVA Base		TO/GO
	MVA Base Secondary-Tertiary (RbaseSecTer and		
	XbaseSecTer are given on this MVA Base). If a zero		
	or negative value is specified, then the value is set		
MVABaseSecTer	equal to MVABasePriSec		TO/GO

Field	Description	Desired Value	Source
	MVA Base Tertiary-Primary (RbaseTerPri and		
	XbaseTerPri are given on this MVA Base). If a zero or		
	negative value is specified, then the value is set equal		
MVABaseTerPri	to MVABasePriSec		TO/GO
	Per unit resistance Primary-Secondary on		
RbasePriSec	MVABasePriSec		TO/GO
	Per unit reactance Primary-Secondary on		
XbasePriSec	MVABasePriSec		TO/GO
	Per unit resistance Secondary-Tertiary on		
RbaseSecTer	MVABaseSecTer		TO/GO
	Per unit reactance Secondary-Tertiary on		
XbaseSecTer	MVABaseSecTer		TO/GO
	Per unit resistance Tertiary-Primary on		
RbaseTerPri	MVABaseTerPri		TO/GO
	Per unit reactance Tertiary-Primary on		
XbaseTerPri	MVABaseTerPri		TO/GO
	Per unit magnetizing conductance (G) on		
Gmagbase	MVABasePriSec		TO/GO
Cinagoaco	Per unit magnetizing susceptance (B) on		10,00
Bmagbase	MVABasePriSec		TO/GO
ImpCorrTablePri			10,00
ImpCorrTableSec	Impedance correction table used for respective		
ImpCorrTableTer	winding. Specify 0 if none used.		TO/GO
Impoorrabierer	Control Type of the respective winding of the		10,00
	transformer. Choices are Fixed, LTC, Mvar, Phase.		
	LTC means that a voltage in controlled by moving the		
	transformer tap. Mvar means that the Mvar flow on the		
ControlTypePri	branch is controlled by moving the tap ratio. Phase		
ControlTypeSec	means that the MW flow on the branch is controlled by		
ControlTypeTer	changing the phase shift angle.		TO/GO
- 71	Set to either YES or NO to indicate whether automatic		
	transformer control is available for the respective		
AutoControlPri	winding. If the ControlType of winding is Phase, then		
AutoControlSec	the choice OPF is also available to indicate that the		
AutoControlTer	phase angle can be an OPF control variable.		TO/GO
RegBusNumPri			
RegBusNumSec			
RegBusNumTer	Regulated Bus Number for respective winding's tap		TO/GO
	Set to either YES or NO		
	NO : Use normal voltage control based on the		
	regulated bus and voltage setpoint.		
	YES : Use line drop compensation voltage control on		
	the respective winding		
	In order to use line drop compensation on the		
	respective winding, the regulated bus must be one of		
UseLineDropPri	the terminals of the branch. The line drop is then		
UseLineDropSec	calculated looking out from that branch into the rest of		
UseLineDropTer	the system.		TO/GO
_	Line Drop Compensation resistance value for		
RcompPri	respective winding used during a contingency power		
RcompSec	flow solution. Value will be expressed in per unit on		TO/00
RcompTer	the system MVA base.		TO/GO
XcompPri	Line Drop Compensation reactance value used during		
XcompSec	a contingency power flow solution. Value will be		TO/00
XcompTer	expressed in per unit on the system MVA base.		TO/GO

Field	Description	Desired Value	Source
RegMaxPri			
RegMaxSec	Maximum desired regulated value for control using the		
RegMaxTer	respective winding		TO/GO
RegMinPri			
RegMinSec	Minimum desired regulated value for control using the		
RegMinTer	respective winding		TO/GO
	Target Type for the control when going outside of the		
RegTargetTypePri	RegMax and RegMin values. Choices are:		
RegTargetTypeSec	1. Middle		
RegTargetTypeTer	2. Max/Min		TO/GO
NomkVPri			
NomkVSec	Transformer Nominal kV Voltage of the respective		
NomkVTer	winding		TO/GO
TapFixedPri			
TapFixedSec	Fixed Tap on transformer voltage kV base for		
TapFixedTer	respective winding		TO/GO
TapMaxPri			
TapMaxSec	Maximum total tap on transformer voltage kV base for		
TapMaxTer	primary		TO/GO
TapMinPri			
TapMinSec	Minimum total tap on transformer voltage kV base for		
TapMinTer	respective winding		TO/GO
TapStepSizePri			
TapStepSizeSec	Tap step size on transformer voltage kV base for		
TapStepSizeTer	respective winding		TO/GO
TapPri			
TapSec	Total Tap on transformer voltage kV base for		
TapTer	respective winding	NA	Software
PhasePri			
PhaseSec			
PhaseTer	Phase shift for respective winding	NA	Software
OwnerNum1	Owner Number 1.		TP
OwnerPerc1	Owner 1 Percent		TP
OwnerNum2	Owner Number 2		TP
OwnerPerc2	Owner 2		TP
OwnerNum3	Owner Number 3		TP
OwnerPerc3	Owner 3		TP
OwnerNum4	Owner Number 4		TP
OwnerPerc4	Owner 4		TP
OwnerNum5	Owner Number 5		TP
OwnerPerc5	Owner 5		TP
OwnerNum6	Owner Number 6		TP
OwnerPerc6	Owner 6		TP
Our a mN	Over an Neurahan 7		
OwnerNum7	Owner Number 7		TP
OwnerPerc7	Owner 7		TP
OwnerPerc7 OwnerNum8	Owner 7 Owner Number 8		TP TP
OwnerPerc7 OwnerNum8 OwnerPerc8	Owner 7 Owner Number 8 Owner 8		TP
OwnerPerc7 OwnerNum8 OwnerPerc8 MonitorPri	Owner 7 Owner Number 8 Owner 8 Set to YES to specify that this respective winding		TP TP
OwnerPerc7 OwnerNum8 OwnerPerc8 MonitorPri MonitorSec	Owner 7 Owner Number 8 Owner 8 Set to YES to specify that this respective winding should be monitored. Set to NO to not monitor this		TP TP TP
OwnerPerc7 OwnerNum8 OwnerPerc8 MonitorPri MonitorSec MonitorTer	Owner 7 Owner Number 8 Owner 8 Set to YES to specify that this respective winding	Refer to TP-SPP-06	TP TP
OwnerPerc7 OwnerNum8 OwnerPerc8 MonitorPri MonitorSec MonitorTer LimitSetPri	Owner 7 Owner Number 8 Owner 8 Set to YES to specify that this respective winding should be monitored. Set to NO to not monitor this respective winding.	Refer to TP-SPP-06	TP TP TP
OwnerPerc7 OwnerNum8 OwnerPerc8 MonitorPri MonitorSec MonitorTer	Owner 7 Owner Number 8 Owner 8 Set to YES to specify that this respective winding should be monitored. Set to NO to not monitor this	Refer to TP-SPP-06	TP TP TP

Field	Description	Desired Value	Source
LimitMVAAPri			
LimitMVAOPri	15 limits AH for the primary winding		TO/GO
LimitMVAASec			
LimitMVAOSec	15 limits AH for the secondary winding		TO/GO
LimitMVAATer			
LimitMVAOTer	15 limits AH for the secondary winding		TO/GO
	Name of the DataMaintainer specifically assigned to		
	this object. This can be blank as well. For objects		
	which inherit their DataMaintainer this will still be	Blank – Inherit from	
DataMaintainerAssign	blank.	Substation object	TP

 Table 13:
 Three Winding Transformer Data Requirements

9.5. Load Data

9.5.1. Steady State

Load is used to represent an aggregation of distribution load.

Level of Detail: Each load service point from the Transmission System. The aggregation is typically to the transmission voltage level at each station. A separate load record shall be used to represent load service at the same station for different transmission customers.

Assume all load is in service. (MOD-032-1, Att. 1 SS-2b)

Field	Description	Desired Value	Source
	A comma-delimited list of unique label		
	identifiers for this object. The syntax for		
	this field is described in detail in Section		тр
AllLabels	2.3.4.		TP
	KEY1 Number of the bus.	40000 40000	
Duchlum	When reading record, see special note in	48000-49999	тр
BusNum	Section 2.4.	480000-499999	TP
	KEY2 2-character load identification	Load modeling generator	
ID	field. Used to identify multiple loads at a single bus	station service shall have Load ID set to 'SS.'	ТР
Status	, , , , , , , , , , , , , , , , , , ,	Load ID set to 33.	TP
Status	The status of the load (Open or Closed)	Set to 'NO' for loads which	IP
	Sat to VES to parmit this load to be		
	Set to YES to permit this load to be automatically controlled by various	should not be changed in load scaling operations of	
AGC	software tools	power flow software.	ТР
AGC			TP,
SMW	Constant Real Power in MW	Refer to TP-SPP-07	SS-2a
			TP,
SMvar	Constant Reactive Power in Mvar	Refer to TP-SPP-07	SS-2a
	Constant Current Real Power in nominal		
	MW (linearly dependent on per unit		
	voltage)		
IMW		"O"	TP
	Constant Current Reactive Power in		
	nominal Mvar (linearly dependent on per		
IMvar	unit voltage)	"0"	TP
	Constant Impedance Real Power in		
	nominal MW (dependent on square of per		
ZMW	unit voltage)	"0"	TP

Field	Description	Desired Value	Source
	Constant Impedance Reactive Power in		
714	nominal Mvar (linearly on square of per	"O"	тр
ZMvar	unit voltage) Status of the Distributed Generation	"O"	TP
	associated with the load record (OPEN or		
DistStatus	CLOSED)		TP
	Constant MW of the distributed		
	generation associated with the load		
DistMWInput	record		TP
	Constant Mvar of the distributed		
DistMvarInput	generation associated with the load record		TP
Distillarinput	Either YES or NO. Presently this field is		
Interruptible	informational only.		TP
·	When automatically dispatched this is the		
MWMax	maximum MW demand of the load.		TP
	When automatically dispatched this is the		
MWMin	minimum MW demand of the load.		TP
		Seven-character identifiers of the climate zone and load	
		type – the first three	
		characters represent the	
		climate zone, underscore,	
		and three characters	
		representing the substation/feeder type.	
		Details are included in the	
		LID Instructions and	
	Name of the LoadModelGroup to which	Composite Load Model	
LoadModelGroup	the load belongs	Implementation documents.	TP
	Number of Area to which the load is		
	assigned. This can be different than the		
	area of the terminal bus. When reading this field, if an area does not already exist		
	with this number, then a new area will		
AreaNumber	automatically be created.	"40"	TP
		Shall be used to distinguish	
		the designated regions	
		within Avista's BAA	
		 440 AVA: Borderline on BPA 	
		• 441 AVA: Coeur	
		D'Alene	
		• 442 AVA:	
		• 443 AVA:	
		• 444 AVA:	
		Lewiston/Clarkston	
		 445 AVA: Big Bend 	
		 446 AVA: Palouse 	
	Number of Zone to which the load is	• 447 AVA:	
	assigned. This can be different than the	Spokane	
	area of the terminal bus. When reading this field, if a zone does not already exist	• 448 AVA: Pend	
	with this number, then a new zone will	Oreille PUD	
	automatically be created.	 449 AVA: 	

Field	Description	Desired Value	Source
	Number of Balancing Authority to which		
	the load is assigned. This can be different		
	than the area of the terminal bus. When		
	reading this field, if a balancing authority does not already exist with this number,		
	then a new balancing authority will		
BANumber	automatically be created.	40 or 29	TP
	Number of the Owner to which the load is		
OwnerNumber	assigned		TP
EMSType	Record type read from an EMS system		TP
EMSID	String ID for load used in EMS systems		TP
	Name of the DataMaintainer specifically		
	assigned to this object. This can be blank		
	as well. For objects which inherit their	Blank – inherit from	
DataMaintainerAssign	DataMaintainer this will still be blank.	Substation object	TP

Table 14: Steady State Load Data Requirements

9.5.2. Dynamic

9.5.2.1. Load Characteristic

WECC utilizes the PSLF CMPLDW dynamic composite load model to represent the dynamic performance of loads. WECC staff populates the CMPLDW parameters for each WECC approved base case using tools developed by MVWG. Avista is responsible for populating the LoadModelGroup field (converted to Long ID in PSLF) in the steady state data submittal for WECC approved base cases. The LoadModelGroup format is determined based on the climate zone and feeder type the load is intended to represent. All Avista load is in the Northwest Inland (NWI) climate zone. Refer to the most recent WECC MVWG documentation for designation of the feeder type.

9.5.2.2. Relay Models (PRC-006-5, R6)

The following procedure should be followed annually in the second quarter to model (database maintenance) under frequency load shedding and generator low frequency ride thru relays:

- 1. Avista TOP leads the NWPP/WECC program within Avista for load shedding, and it provides to Planning the updated Attachment A of PRC-006-WECC-CRT, usually in April. Attachment A is an Excel spreadsheet with numerous Tabs; Tab 2 and Tab 4a being of interest to Transmission Planning. Planning will, in turn, populate Tab 3 and Tab 4b.
- 2. Tab 2 Detail Load: this tab presents blocks of load to shed on select feeders based on frequency and time. The data is based on a case noted at the top of the Tab, typically the current year Heavy Winter case.
 - a. If Tab 2 has been populated based on a Heavy Winter case, open the Year One Heavy Winter Planning case in PowerWorld Simulator and scale the "Avista" area load to match the system peak load noted at the top of Tab 2.
 - b. Navigate within Model Explorer to Transient Stability, Load Relays, and LSDT9. Set the Area/Zone/Owner/Data Maintainer filtering as required to

show the "Avista" load relays in the LSDT9 table. The table has two values of interest:

- i. MW shows the scaled forecasted load for the case under study
- ii. frac# this is the fraction of load that will trip if frequency and time conditions for the relay are met
- c. For each block and load in LSDT9, calculate the frac value necessary that when multiplied by the forecasted load equals the Load Shed MW value provided in Tab 2. The percentage of load to drop for each relay (ie. frac1) will depend on how the representation of load in the case matches the feeders and load being tripped by the UFLS scheme in Tab 2. Differences in the case load vs. Tab 2 load are handled by adjusting the frac value of the individual loads such that the load shed in the load shed block matches the Tab 2 value. Frac values above 1.0 are not permitted.
- d. Update the frac values in the case and with the newly calculated values. Populate the load shed relay model parameters with the current values in the Dynamic Model for Substations section of Tab 3 – Load PSLF dyd data. Copy/paste from the previous years' table values will save time.
- e. Verify the TLIN1 requirements, per block, in Tab 2 and update the case as necessary. Populate the transmission line relay model parameters in the Dynamic Model for Lines section of Tab 3.
- 3. Tab 4a Generator: this tab presents the generator frequency tripping/ride thru schedule. For each generator listed, populate a LHFRT dynamic model in the case with the corresponding frequency tripping settings and populate Tab 4b Gen PSLF dyd data with the generator model information.
- 4. To test the models, open a recent WECC approved base case. Load the newly developed UFLS models and generator protection models into the program. A significant amount of generation must be dropped to have the UFLS models react.
- 5. Return the updated Attachment A spreadsheet to Transmission Operations who will return it to NWPP.
- 6. Prepare a .dyd file with all updated modeling information and send it to WECC for inclusion in the Master Dynamics File (MDF).
- 7. Update the PRC-006-5 RSAW and OneNote with the latest information: copies of emails, Attachment A, updated .dyd file, etc.

9.6. Large Motors

Motors larger than 10MVA (synchronous or non-synchronous) should be modeled explicitly, with their respective unit transformers. The Transmission Planner function is responsible for developing the necessary steady state and dynamic models to adequately portray the performance of the motors being modeled. Typical information can be gathered from the customer, or owner of the motors, to assist in the development of the models.

9.7. Generator

Field	Description	Desired Value	Source
	A comma-delimited list of unique label		
	identifiers for this object. The syntax for this		
AllLabels	field is described in detail in Section 2.3.4.		GO/TP
	KEY1 Number of the bus.		
	When reading record, see special note in	48000-49999	
BusNum	Section 2.4.	480000-499999	TP
	KEY2 2-character generator identification		
	field. Used to identify multiple generators at a		
ID	single bus		TP
Status	The status of the generator (Open or Closed)	Refer to TP-SPP-07	TP
	Desired per unit voltage setpoint at the		
VoltSet	regulated bus		GO
RegBusNum	Number of regulated bus		GO
	Remote regulation factor. When multiple		
	buses have generation that control the		
	voltage at a single bus, this determines the		
RegFactor	ratio in which the Mvar output is shared.		GO
	Set to YES or NO to specify if the generator		
AGC	is available for AGC		TP
	Generator's participation factor. Used during		
	Area Interchange Control when set to AGC is		
	set to Part AGC. Also used during post-		
	contingency make-up power. Also used for		
	sensitivity calculations when using Areas,		
PartFact	Zones, or Super Areas.		TP
	This is what the generator's MW output is if it		
	is presently in service. If the generator is in		
	service, this is the same as the MW field. lif		
	the generator is out of service, then the MW		
MWSetPoint	field would return 0.0.	Refer to TP-SPP-07	TP
MWMax	Generator's maximum MW limit		GO
MWMin	Generator's minimum MW limit		GO
MWMaxEcon	Generator's maximum MW limit		TP
MWMinEcon	Generator's minimum MW limit		TP
	Set to YES to specify if the generator's MW		
EnforceMWLimit	limits are enforced	YES	TP
	Set to YES or NO to specify if the generator		
AVR	is available for AVR		GO
Mvar	Generator's present Mvar output	NA	Software
MvarMax	Generator's maximum Mvar limit		GO
MvarMin	Generator's minimum Mvar limit		GO
	Indicates if the generator should use its Mvar		
UseCapCurve	capability curve if it has one defined.		GO

TP-SPP-04 Data for Power System Modeling and Analysis

Field	Description	Desired Value	Source
	Special Var limit modes of either "None",		
	"Boundary Power Factor" or "Constant		
	Power Factor". When not equal to None, the		
	Var limit magnitudes are determined from the		
	real power output and the Wind Control		
	Mode Power Factor value. For Boundary		
	mode, the maximum limit is positive, and the		
	minimum limit is negative. For Constant		
	mode, minimum limit = maximum limit, a		
	positive Wind Control Mode Power Factor		
	means the limits have the same sign as the		
	real power, and a negative Wind Control		
	Mode Power Factor means the limits are the		
WindContMode	opposite sign as the real power.		GO
	This is the power factor value used with the		
	Wind Control Mode. Magnitude of the value		
	must be between 0.01 and 1.00. Negative		
	values are important when the Wind Control		
WindContModePF	Mode is "Constant Power Factor".		GO
	Field describing if the generator uses line		
UseLineDrop	drop/reactive current compensation control		GO
	Generator's Line Drop Compensation		
	resistance in per unit on the system MVA		
Rcomp	Base		GO
	Generator's Line Drop Compensation		
	reactance in per unit on the system MVA		
Xcomp	Base		GO
MVABase	Generator's MVA base		GO
	Machine Internal Resistance in per unit on		
GenR	Generator MVA Base		GO
	Machine Positive Sequence Resistance in		
GenSeqR+	per unit on Generator MVA Base		GO
	Machine Negative Sequence Resistance in		
GenSeqR-	per unit on Generator MVA Base		GO
	Machine Zero Sequence Resistance in per		
GenSeqR0	unit on Generator MVA Base		GO
	Machine Positive Sequence Reactance in		
GenSeqX+	per unit on Generator MVA Base		GO
	Machine Negative Sequence Reactance in		
GenSeqX-	per unit on Generator MVA Base		GO
	Machine Zero Sequence Reactance in per		
GenSeqX0	unit on Generator MVA Base		GO
	Machine Internal Reactance in per unit on		
GenZ	Generator MVA Base		GO
StepR	Internal Step up: R (resistance)	"0"	TP
StepX	Internal Step up: X (reactance)	"O"	TP
StepTap	Internal Step up: Tap Ratio	"1"	TP
	Specifies how governors respond in transient	· ·	
	stability simulation. The choices are Normal,		
	SIADILITY SITULIATION THE CHOICES ARE NOTIFIA		

Field	Description	Desired Value	Source
	Two-character field describing what kind of		
	machine the generator is. The choices are		
	informed by the Energy Information Agency		
	of US Department of Energy. There is an EIA		
	Form 860 for the Annual Electric Generator		
	Report. The choices are the first two		
	characters of the following list. Also note that		
	in square brackets are the integer code that		
	will be written to an EPC file.		
	UN (Unknown) [0]		
	BA (Energy Storage, Battery) [99]		
	BT (Turbines Used in a Binary Cycle,		
	including those used for geothermal		
	applications) [99]		
	CA (Combined Cycle Steam Part) [2]		
	CC (Combined Cycle Generic) [4]		
	CE (Compressed Air Storage) [99]		
	CP (Energy Storage, Concentrated Solar		
	Power) [99]		
	CS (Combined Cycle Single Shaft) [13]		
	CT (Combined Cycle Combustion Turbine		
	Part) [3]		
	DC (represents DC ties) [40]		
	ES (Energy Storage, Other) [99]		
	FC (Fuel Cell) [99]		
	FW (Energy Storage, Flywheel) [99]		
	GT (Gas Turbine) [11]		
	HA (Hydrokinetic, Axial Flow Turbine) [99]		
	HB (Hydrokinetic, Wave Buoy) [99]		
	HK (Hydrokinetic, Other) [99]		
	HY (Hydro) [5]		
	IC (Internal Combustion) [6]		
	IT (Internal Combustion Turbo Charged) [7]		
	JE (Jet Engine) [12]		
	MP (Motor/Pump) [41]		
	NB (ST - Boiling Water Nuclear Reactor) [99]		
	NG (ST - Graphite Nuclear Reactor) [99]		
	NH (ST - High Temperature Gas Nuclear		
	Reactor) [99]		
	NP (ST - Pressurized Water Nuclear		
	Reactor) [99]		
	OT (Other) [99]		
	PS (Hydro Pumped Storage) [5 same as HY]		
	PV (Photovoltaic) [31]		
	SC (Synchronous Condenser) [14]		
	ST (Steam Turbine) [1]		
	W1 (Wind Turbine, Type 1) [21]		
	W2 (Wind Turbine, Type 2) [22]		
	W2 (Wind Turbine, Type 2) [22] W3 (Wind Turbine, Type 3) [23]		
	W4 (Wind Turbine, Type 4) [24]		
	WS (Wind Turbine, Offshore) [20 same WT]		
UnitTypeCode	WT (Wind Turbine) [20]		GO
Onicrypecode			

TP-SPP-04 Data for Power System Modeling and Analysis

2024

Field	Description	Desired Value	Source
	It is possible for the terminal bus to belong to		
	a different area than the device belongs. This		
	is the Area number of the Generator. When		
	reading this field, if an area does not already		
	exist with this number, then a new area will		
AreaNumber	automatically be created.		TP
		Shall be used to distinguish	
		the designated regions within Avista's BAA	
		• 440 AVA:	
		Borderline on BPA	
		• 441 AVA: Coeur	
		D'Alene	
		• 442 AVA:	
		• 443 AVA:	
		• 444 AVA:	
		Lewiston/Clarkston	
	It is possible for the terminal bus to belong to	 445 AVA: Big Bend 	
	a different zone than the device belongs.	446 AVA: Palouse	
	This is the Zone number of the Generator.	• 447 AVA: Spokane	
	When reading this field, if a zone does not	• 448 AVA: Pend	
ZeneNumber	already exist with this number, then a new		тр
ZoneNumber	zone will automatically be created.	• 449 AVA:	TP
	It is possible for the terminal bus to belong to a different balancing authority than the		
	device belongs. This is the Balancing		
	Authority number of the Generator. When		
	reading this field, if a balancing authority		
	does not already exist with this number, then		
	a new balancing authority will automatically		
BANumber	be created.		GO
OwnerNum1	Owner Number 1		TP
OwnerPerc1	Owner 1		TP
OwnerNum2	Owner Number 2		TP
OwnerPerc2	Owner 2		TP TD
OwnerNum3	Owner Number 3		TP TP
OwnerPerc3 OwnerNum4	Owner 3 Owner Number 4		TP
OwnerPerc4	Owner 4		TP
OwnerNum5	Owner Number 5		TP
OwnerPerc5	Owner 5		TP
OwnerNum6	Owner Number 6		TP
OwnerPerc6	Owner 6		TP
OwnerNum7	Owner Number 7		TP
OwnerPerc7	Owner 7		TP
OwnerNum8	Owner Number 8		TP
OwnerPerc8	Owner 8		TP
EMSType	Record type read from an EMS system		TP
EMSID	String ID for generator used in EMS systems		TP
	Name of the DataMaintainer specifically		
	assigned to this object. This can be blank as		
	well. For objects which inherit their	Blank – inherit from	
DataMaintainerAssign	DataMaintainer this will still be blank.	Substation object	TP

Table 15: Generator Data Requirements

9.8. Shunt

AlLabels A comma-delimited list of unique label identifiers for this object. The syntax for this field is described in detail in Section 2.3.4. TP/TO. TREY-7 Number of the Bus. With reading record, see special note in Section 2.4. 48000-49999 480000-499999 TP 48000-499999 TP 48000-499999 TP 48000-499999 TP 48000-499999 TP 58000 TP 580000 TP 58000 TP 58	Field	Description	Desired Value	Source
AllLabels 2.3.4. TP/TO AllLabels 2.3.4. TP/TO *KEY* Number of the Bus. When reading record, see special note in BusNum 4800049999 480000-499999 TP BusNum *KEY2* 2 character identification field. Used to identify multiple shunts at a single bus. Note these identifiers must be unique across all shunt objects regardless of ShuntMode. *C* or "R" TP Status CLOSED TP Status CLOSED TP Status of the shunt. Set to either OPEN or CLOSED TP Status of the shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not of service. This is a method of defining a line shunt. The choices are Fixed. Discrete, Continuous, Bus Shunt as those are shunt. The choices are Fixed. Discrete, Continuous, Bus Shunt as those are shuntMode Blank TP ShuntMode stored in another table. TO TO Set to either YES, NO, or FORCE to indicate whether automatic control is available for the shunt. NO : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled TP VoltageControlGroup Name of the voltage control group to which the shunt to into is modeled as an impedance, wherefore the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual MWar will then be this winden. TP Nominal MW value of the shunt at 1.0 per unit vol				
AllLabels 2.3.4. TP/TO When reading record, see special note in BusNum YKEY* Number of the Bus. When reading record, see special note in Section 2.4. 48000-49999 480000-499999 TP ************************************				
KEY Number of the Bus. 48000-49999 BusNum Section 2.4. BusNum Section 2.4. *KEY2* 2 character identification field. 48000-49999 Used to identify multiple shunts at a single bus. Note these identifiers must be unique across all shunt objects regardless of the shunt bields the single shunt bields the other OPEN or CLOSED *C* or "R" TP Status CLOSED TP TP Status Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service. This is a method of defining a line shunt the or model does not or service. The is a method of defining a line shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. TO StatusBranch Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is available for control is available for this shunt. NO : means it is available for control is available of this shunt. NO : means it is available for control if the Area field AutoControl/Shunt = YES and the global option to enable shunts to move is enabled. TP VoltageControlGroup Name of the voltage control group to which the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. TP Norminal Mw value of				
BusNum When reading record, see special note in Section 2.4. 48000-49999 48000-49999 TP "KEY2" 2 character identification field. Used to identify multiple shunts at a single across all shunt objects regardless of ShuntMode. "C" or "R" TP Status of the shunt. Set to either OPEN or CLOSED "C" or "R" TP Status Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch presently have breakers explicitly defined. In this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. Blank TP ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. TO No: means it is available for control if the Area field AutoControlShunt at the global option to enable shunts to move is enabled TP VoltageControlGroup Name of the voltage control group to which the shunt belongs. TP Nominal MW value of the shunt at 1.0 per unit voltage. TP Nominal MW value of the shunt at 1.0 per unit voltage. TP Nominal MW value of the shunt at 1.0 per unit voltage. TP	AllLabels			TP/TO
BusNum Section 2.4. 480000-499999 TP "KEY2" 2 character identification field. Used to identify multiple shunts at a single bus. Note these identifiers must be unique across all shunt objects regardless of "C" or "R" TP Status Status of the shunt. Set to either OPEN or CLOSED "C" or "R" TP Status Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service. This is a method of defining a line shunt if your model does not of service where were the linke doranch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch presently have breakers explicitly defined. Blank TP ShuntMode Stored in another table. TO ShuntMode Stored in another table. TO ShuntMode Stored in another table. TO ShuntMode Store an another table. TO ShuntMode Store and the global option to enable shunts to move is enabled of control is available for this shunt. NO : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled TP VoltageControlGroup Name of the voltage control group to which the shunt tal 1.0 per unit voltage. The shunt is modeled as an impedanc			10000 10000	
"KEY2" 2 character identification field. Used to identify multiple shunts at a single bus. Note these identifiers must be unique across all shunt objects regardless of ShuntMode. "C" or "R" TP Status CLOSED TP Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch presently have breakers explicitly defined. Blank TP ShuntMode short TP KS, NO, or FORCE to indicate whether automatic control is available for this shunt. TO TO Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. TP TP AutoControl Regarding shunt control. TP TP Nominal MW value of the shunt at 1.0 per unit v	DuraNitura			TD
IDUsed to identify multiple shunts at a single bus. Note these identifiers must be unique across all shunt objects regardless of ShuntMode."C" or "R"TPStatusStatus of the shunt. Set to either OPEN or CLOSEDTPStatusObject string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service. Whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined.BlankTPStatusBranchSpecify the type of control mode for this shunt. The choices are Fixed. Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.TOShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not control if the Area field AutoControlTPAutoControlName of the voltage control group to which the shunt be global option regarding shunt control.TPVoltageControlGroupWhich the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage."O"TPMWNomunit voltage."O"TPMWNomunit voltage."O"TPMominal Mvar value of the shunt at 1.0 per unit voltage."O"TPMominal MW arue of the shunt at 1.0 per unit voltage."O"TPMominal Mvar value of the shunt at 1.0 per unit voltage."O"TPMominal Mvar value of the shunt at 1.0 per unit voltage."	Busnum		480000-499999	IP
ID bus. Note these identifiers must be unique across all shunt objects regardless of ShuntMode. "C" or "R" TP Status CLOSED TP Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not service whenever the linked branch is out of service. This is a method of defining a line shunt. The choices are Fixed. Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are ShuntMode Blank TP ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled TD AutoControl regarding shunt control. TP VoltageControlGroup Name of the voltage control group to which the shunt belongs. TP Nominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this wale multiplied by the square of the per unit voltage. The shunt is modeled as an impedance with the actual MWa will then be this value. TP Mominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MWa will then be the refere the actual MWa will then be the shunt belongs. TP MvarNom Software RegBusNum Bus number of the regulated bus TP <td></td> <td></td> <td></td> <td></td>				
ID ShuntMode. "C" or "R" TP Status CLOSED TP Status Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service. Whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not TP StatusBranch presently have breakers explicitly defined. Blank TP Specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. TO Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled TP AutoControl regarding shunt control. TP Notinge. The whole with the actual MW be this unit voltage. The shunt is modeled as an impedance with the actual MW be the value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual MWa will then be this value multiplied by the square of the per unit voltage. MWNom TP Mominal Mva value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual MWa will then be this value multiplied by the square of the per unit voltage. MWNom TP Mominal Mva value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual MWa will then be this value multiplied by the square of the per				
ID ShuntMode. "C" or "R" TP Status Status of the shunt. Set to either OPEN or CLOSED TP Status Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch Specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. TO ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control. TP Name of the voltage control group to voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mwa will then be this value multiplied by the square of the regulated value TP				
Status Status of the shunt. Set to either OPEN or CLOSED TP Status Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch presently have breakers explicitly defined. Blank TP StatusBranch presently have breakers explicitly defined. Blank TP StatusBranch specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. TO ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. TO NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE: means it is available for control and it ignores the Area field AutoControl. TP VoltageControlGroup Name of the voltage control group to which the shunt belongs. TP Nominal IWV value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. TP MvarNom Bus number of the regulated value <	חו		"C" or "B"	ТР
Status CLOSED TP Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch Specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are TO ShuntMode Stot either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled TP VoltageControlGroup Nominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mwar will then be this value multiplied by the square of the regulated value TP				
Object string referencing a branch in the system using the format of Section 2.3. The shunt will be considered out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch Presently have breakers explicitly defined. Specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. TO ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE: means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control. TP VoltageControlGroup Nominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mwar will then be this value on the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mwar will then be this value on the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mwar will then be this value unutipied by the square of the per unit voltage. TP Mominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value unutipied by the square of the per	Status			ТР
system using the format of Section 2.3. The shunt will be considered out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined. Blank TP StatusBranch Specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. Blank TP ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO: means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control. TP VoltageControlGroup Which the shunt and the global option runit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. "O" TP MWNom Nominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. "O" TP MVarNom Subur of the regulated bus TP Software				
The shunt will be considered out of service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined.BlankTPStatusBranchSpecify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.BlankTPShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt and the global option regarding shunt control.TOAutoControlregarding shunt control.TPNotageControlGroupWhich the shunt betongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual MVar walue multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value untilpided by the square of the per unit voltage.TPMWNomSoftware RegBusNumBus number of the regulated busTPShunt Will ty to keep regulated busNASoftware				
service whenever the linked branch is out of service. This is a method of defining a line shunt if your model does not presently have breakers explicitly defined.BlankTPStatusBranchSpecify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.BlankTPShuntModeStore indicate whether automatic control is available for this shunt. NO : means it is not control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControl regarding shunt control.TPAutoControlregarding shunt control.TPVoltageControlGroupwhich the shunt at 1.0 per unit voltage.TPNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MVar will then be this value multiplied by the square of the per unit voltage.TPMWNomNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftware RegBusNumMvarNomBus number of the regulated busTPTP				
StatusBranchline shunt if your model does not presently have breakers explicitly defined.BlankTPSpecify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.BlankTPShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is not controlled YES : means it is not controlled YES : means it is available for control and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControl VoltageControlGroupName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance. Therefore the actual MWar will then be this value multiplied by the will then be this value multiplied by the will then be this value multiplied by the RegBusNumTPMvarNomSubmer of the per unit voltage.NASoftware TPMvarNomBus number of the regulated busTP				
StatusBranchline shunt if your model does not presently have breakers explicitly defined.BlankTPSpecify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.BlankTPShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is not controlled YES : means it is not controlled YES : means it is available for control and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControl VoltageControlGroupName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance. Therefore the actual MWar will then be this value multiplied by the will then be this value multiplied by the will then be this value multiplied by the RegBusNumTPMvarNomSubmer of the per unit voltage.NASoftware TPMvarNomBus number of the regulated busTP		of service. This is a method of defining a		
StatusBranch presently have breakers explicitly defined. Blank TP Specify the type of control mode for this shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table. TO ShuntMode Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. TO NO : means it is not controlled YES : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option to enable shunts to move is enabled TP VoltageControlGroup Name of the voltage control group to which the shunt at 1.0 pre unit voltage. The shunt is modeled as an impedance, therefore the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual MW and an an impedance therefore the actual MW and an an impedance with the actual MW and an an impedance. Whetherefore the actual MW and an an impedance with the actual MW and an an impedance with the actual MW and an an impedance. Wherefore the actual MW and an an impedance. Maximum and the global option an in word and in word and in the global option an impedance with the actual MW and an an impedance. Maximum and the per unit voltage. The shunt is modeled as an impedance therefore the actual MW and an an impedance. Maximum and the per unit voltage. The shunt is modeled as an impedance therefore the actual MW and an an impedance. Maximum and an in the global option and it word arean an impedance t				
shunt. The choices are Fixed, Discrete, Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.TOShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.TOMvarNomBus number of the regulated busTP	StatusBranch	presently have breakers explicitly defined.	Blank	TP
Continuous, Bus Shunt or SVC. Note that in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.TOShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlTPAutoControlregarding shunt control.TPNominal MW value of the shunt at 1.0 per unit voltage.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per will then be this value of the shunt at 1.0 per unit voltage."O"MWNomUnit voltage. The shunt is modeled as an impedance, therefore the actual MWar will then be this value of the shunt at 1.0 per unit voltage."O"MWNomUnit voltage."O"TPMorninal Mvar value of the shunt at 1.0 per unit voltage."O"TPMWNomNorninal Mvar value of the shunt at 1.0 per unit voltage."O"TPMVArNomsquare of the per unit voltage."O"TPMorninal Mvar value of the shunt at 1.0 per unit voltage.WarSoftwareRegBusNumBus number of the regulated busNASoftware		Specify the type of control mode for this		
in this table it is expected that none of the entries will be Bus Shunt as those are stored in another table.TOShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlregarding shunt control.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."O"TPMornal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."O"TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTP		shunt. The choices are Fixed, Discrete,		
ShuntModeentries will be Bus Shunt as those are stored in another table.TOShuntModeSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlregarding shunt control.TPNominal MW value of the shunt at 1.0 per unit voltage.TPMominal MW value of the shunt at 1.0 per unit voltage."0"MVNomunit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."0"MvarNomsquare of the pen unit voltage.NASoftwareRegBusNumBus number of the regulated busTP		Continuous, Bus Shunt or SVC. Note that		
ShuntModestored in another table.TOSet to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlregarding shunt control.TPVoltageControlGroupName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftwareMvarNomBus number of the regulated valueTPTP		in this table it is expected that none of the		
Set to either YES, NO, or FORCE to indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlregarding shunt control.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."0"TPMwarNomSoftware RegBusNumBus number of the regulated busTP		entries will be Bus Shunt as those are		
indicate whether automatic control is available for this shunt. NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlregarding shunt control.TPNotic the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the an impedance, therefore the actual Mvar will then be this value multiplied by the garae of the per unit voltage.TPMwarNomSoftware RegBusNumBus number of the regulated busTP	ShuntMode	stored in another table.		ТО
available for this shunt.NO : means it is not controlledImage: Second sec				
NO : means it is not controlled YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global optionImage: Control Control and it ignores the Area field AutoControlShunt and the global optionImage: Control Control TPAutoControlregarding shunt control.TPAutoControl which the shunt belongs.TPVoltageControlGroupWhich the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTP				
YES : means it is available for control if the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global optionImage: Control regarding shunt controlAutoControlregarding shunt control.TPAutoControlGroupwhich the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.TPMvarNomSoftware RegBusNumBus number of the regulated busNASoftware				
the Area field AutoControlShunt = YES and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global optionImage: Control and it ignores the Area field AutoControlShunt and the global optionAutoControlregarding shunt control.TPName of the voltage control group to which the shunt belongs.TPVoltageControlGroupNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."O"MWNomImage: The shunt is modeled as an impedance, therefore the actual MW be this value multiplied by the square of the per unit voltage."O"MWNomImage: The shunt is modeled as an impedance, therefore the actual MW be this value multiplied by the square of the per unit voltage."O"MWNomImage: The shunt is modeled as an impedance, therefore the actual MVar will then be this value multiplied by the square of the per unit voltage.Mominal Marea MareaMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueTP				
and the global option to enable shunts to move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global optionImage: Control is a control is				
move is enabled FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global optionTPAutoControlregarding shunt control.TPName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage. The shunt at 1.0 per unit voltage."O"TPMWNomNominal MV value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, with the actual MW be this value multiplied by the square of the per unit voltage."O"TPMWNomNominal MVar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual MVar will then be this value multiplied by the square of the per unit voltage."O"TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTP				
FORCE : means it is available for control and it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlName of the voltage control group to which the shunt belongs.TPVoltageControlGroupWhich the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."O"TPMWNomNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual MWar will then be this value multiplied by the square of the per unit voltage."O"TPMWNomSoftwareMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPTP				
AutoControland it ignores the Area field AutoControlShunt and the global option regarding shunt control.TPAutoControlName of the voltage control group to which the shunt belongs.TPVoltageControlGroupNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."0"TPMWNomNominal Mv value of the shunt at 1.0 per unit voltage."0"TPMWNomunit voltage. The shunt is modeled as an impedance, therefore the actual Mv be this value multiplied by the square of the per unit voltage."0"TPMWNomNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftwareMvarNomBus number of the regulated busTPTPShunt will try to keep regulated valueTPTP				
AutoControlShunt and the global option regarding shunt control.TPAutoControlTPName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."O"MWNomNominal Mvar value of the shunt at 1.0 per unit voltage."O"MWNomNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."O"MvarNomSoftware TPMvarNomBus number of the regulated busTP				
AutoControlregarding shunt control.TPName of the voltage control group to which the shunt belongs.TPVoltageControlGroupNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."0"MWNomunit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."0"MWNomunit voltage."0"TPMwnomunit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the garae of the per unit voltage."0"MvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTP				
VoltageControlGroupName of the voltage control group to which the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per"0"TPMWNomunit voltage."0"TPNominal MV value of the shunt at 1.0 per unit voltage."0"TPMWNomunit voltage."0"TPNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."0"TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTP	AutoControl			тр
VoltageControlGroupwhich the shunt belongs.TPNominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."0"MWNomunit voltage."0"MWNomunit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."0"MvarNomsquare of the per unit voltage.NAMvarNomSoftwareRegBusNumBus number of the regulated busTP	Addeenitor			11
Nominal MW value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."O"TPMWNomunit voltage."O"TPNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."O"TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueImage: Superior Supe				ТР
unit voltage. The shunt is modeled as an impedance with the actual MW be this value multiplied by the square of the per unit voltage."0"TPMWNomNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftwareMvarNomBus number of the regulated busTPShunt will try to keep regulated valueImage: The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftware	Voltageeentroreroup			
impedance with the actual MW be this value multiplied by the square of the per unit voltage."0"TPMWNomNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."0"TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueImage: Comparison of the regulated valueTP				
MWNomvalue multiplied by the square of the per unit voltage."0"TPMWNomNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by theSoftwareMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueImage: Constraint of the regulated valueImage: Constraint of the regulated value				
MWNomunit voltage."0"TPNominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage."0"TPMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueImage: Constraint of the regulated valueImage: Constraint of the regulated value				
Nominal Mvar value of the shunt at 1.0 per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftwareMvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueImage: Construction of the regulated valueImage: Construction of the regulated value	MWNom		"O"	ТР
per unit voltage. The shunt is modeled as an impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftwareMvarNomBus number of the regulated busTPShunt will try to keep regulated valueSoftware				<u> </u>
An impedance, therefore the actual Mvar will then be this value multiplied by the square of the per unit voltage.NASoftwareMvarNomBus number of the regulated busTPShunt will try to keep regulated valueSoftware				
will then be this value multiplied by the square of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueImage: Comparison of the regulated value				
MvarNomsquare of the per unit voltage.NASoftwareRegBusNumBus number of the regulated busTPShunt will try to keep regulated valueSoftware				
RegBusNum Bus number of the regulated bus TP Shunt will try to keep regulated value	MvarNom		NA	Software
Shunt will try to keep regulated value				
		ě – – – – – – – – – – – – – – – – – – –		
	RegHigh	below this value		TP

Field	Description	Desired Value	Source
	Shunt will try to keep regulated value		
RegLow	above this value		TP
	When the regulated value goes outside of		
	the Low-High desired range, the control logic will attempt to bring it back to this		
RegTarget	target value		TP
Regrarget	Set to YES or NO. Default value is NO		
	which means that the RegTarget value is		
	used for both low and high excursions. If		
	set to YES, then low excursions will use		
	RegTarget, while high excursions will use		
RegTargetHighUse	RegTargetHigh.	NO	TP
	When the regulated value goes above of		
	the RegHigh value, the control logic will		
RegTargetHigh	attempt to bring it back to this target value		TP
	Amount of Mvar support that this switched		
	shunt will provide if the bus that it is		
DogEastor	regulating is being regulated by more than		TP/
RegFactor	one switched shunt.		Software
RegulationType	Choices are either Volt, Gen Mvar, Wind Mvar, or Custom Control		TP
RegulationType	When using Custom Control		
	RegulationType, this is the name of the		
CustomControlModelEx	Model Expression which described the		
pressionName	desired Mvar output of the shunt.		TP
	Set to YES to allow the switched shunt to		
	operate during the solution of the power		
	flow equations. Default value is NO		
	meaning that the shunt will be moved		
InnerPowerFlow	during the voltage control loop.	NO	TP
	Default Value is NO. Set to YES to signify		
	that this this shunt may operate only at		
	highest Nominal Mvar possible or at		
	lowest Nominal Mvar possible. This is		
	only done when (ShuntMode = Discrete)		
FullConacitySwitch	or when both (ShuntMode = SVC) AND (SVCType = SVSMO2)	NO	TP
FullCapacitySwitch	Set to YES to use the	NO	IF
	ContinuousMvarNomMax and		
	ContinuousMvarNomMin when the		
	ShuntMode is set to Discrete or		
ContinuousUse	Continuous		то
	Minimum Nominal Mvar of the continuous		
	element. This value is used with Discrete		
	or Continuous ShuntMode when		
	ContinuousUse = YES. It is also used		
A H H H H	when ShuntMode = SVC if the SVCType		
ContinousMvarNomMax	= SVSMO1 or SVSMO3		TO
	Minimum Nominal Mvar of the continuous		
	element. This value is used with Discrete		
	or Continuous ShuntMode when ContinuousUse = YES. It is also used		
	when ShuntMode = SVC if the SVCType		
ContinousMvarNomMin	= SVSMO1 or SVSMO3		то
	Number of equal nominal Mvar steps for		
			то

Field	Description	Desired Value	Source
BlockMvarPerStep1	Nominal Mvar per step for block 1		TO
	Number of equal nominal Mvar steps for		
BlockNumberStep2	block 2		ТО
BlockMvarPerStep2	Nominal Mvar per step for block 2		ТО
	Number of equal nominal Mvar steps for		
BlockNumberStep3	block 3		то
BlockMvarPerStep3	Nominal Mvar per step for block 3		TO
	Number of equal nominal Mvar steps for		
BlockNumberStep4	block 4		TO
BlockMvarPerStep4	Nominal Mvar per step for block 4		TO
	Number of equal nominal Mvar steps for		-
BlockNumberStep5	block 5		TO
BlockMvarPerStep5	Nominal Mvar per step for block 5		ТО
	Number of equal nominal Mvar steps for block 6		то
BlockNumberStep6			TO
BlockMvarPerStep6	Nominal Mvar per step for block 6		ТО
PlaakNumberStan7	Number of equal nominal Mvar steps for block 7		то
BlockNumberStep7			TO TO
BlockMvarPerStep7	Nominal Mvar per step for block 7		10
BlockNumberStep8	Number of equal nominal Mvar steps for block 8		то
BlockMvarPerStep8	Nominal Mvar per step for block 8		ТО
Diockivivaireistepo	Number of equal nominal Mvar steps for		10
BlockNumberStep9	block 9		то
BlockMvarPerStep9	Nominal Mvar per step for block 9		TO
Diockinivari erotepa	Number of equal nominal Mvar steps for		10
BlockNumberStep10	block 10		то
BlockMvarPerStep10	Nominal Mvar per step for block 10		TO
Blocking an orotop to	When ShuntMode = SVC, then this		10
	specifies the type of the SVC. Choices		
	are None, SVSMO1, SVSMO2, and		
SVCType	SVSMO3		то
	SVC control compensating reactance.		
	This works very similarly to line drop		
	compensation for both generator and		
SVCXcomp	transformer control.		TO
	Maximum of Nominal Mvar range in which		
	remote shunts are not switched. Value is		
	expressed in nominal Mvar which		
SVCMvarNomMaxSH	represent what the Mvar would be at 1.0 per unit voltage.		то
SVCIMVarinoiniviaxSH	Minimum of Nominal Mvar range in which		10
	remote shunts are not switched. Value is		
	expressed in nominal Mvar which		
	represent what the Mvar would be at 1.0		
SVCMvarNomMinSH	per unit voltage.		то
	YES/NO status. For SVCType = SVSMO1		
	and SVSMO2, set this to YES to enable		
	the Slow B Control. For SVCType =		
	SVSMO3, set this to YES to enable the		
SVCstsb	Ireset or deadband control		TO
	Maximum of Nominal Mvar range for		
	SVCType = SVSMO1 and SVSMO2 for		
	Slow B Control. Not used with SVCType =		TO
SVCMvarNomMaxSB	SVSMO3		TO

Field	Description	Desired Value	Source
	Minimum of Nominal Mvar range for		
	SVCType = SVSMO1 and SVSMO2 for		
	Slow B Control. Not used with SVCType =		
SVCMvarNomMinSB	SVSMO3		то
	Voltage Range Maximum for the Slow B		
SVCVrefmax	Control used with SVCType = SVSMO1		то
SvCvreimax	and SVSMO2. Voltage Range Minimum for the Slow B		то
	Control used with SVCType = SVSMO1		
SVCVrefmin	and SVSMO2.		то
	Voltage Sensitivity for a change in		
	Injection. Units are Per unit Voltage / Per		
SVCdvdb	unit B		то
	It is possible for the terminal bus to		
	belong to a different area than the device		
	belongs. This is the Area number of the		
	Shunt. When reading this field, if an area		
	does not already exist with this number,		
AreaNumber	then a new area will automatically be created.		TP
Areanumber		Shall be used to distinguish	
		the designated regions	
		within Avista's BAA	
		• 440 AVA:	
		Borderline on BPA	
		• 441 AVA: Coeur	
		d'Alene	
		• 442 AVA:	
		• 443 AVA:	
		• 444 AVA:	
		Lewiston/Clarkston	
		 445 AVA: Big 	
		Bend	
	It is possible for the terminal bus to	• 446 AVA:	
	belong to a different zone than the device	Palouse	
	belongs. This is the Zone number of the	• 447 AVA:	
	Shunt. When reading this field, if a zone	Spokane	
	does not already exist with this number,	 448 AVA: Pend 	
	then a new zone will automatically be	Oreille PUD	
ZoneNumber	created.	• 449 AVA:	TP
	It is possible for the terminal bus to		
	belong to a different balancing authority		
	than the device belongs. This is the		
	Balancing Authority number of the Shunt. When reading this field, if a balancing		
	authority does not already exist with this		
	number, then a new balancing authority		
	will automatically be created.		
BANumber	,		TP
OwnerNum1	Owner Number 1		TP
OwnerPerc1	Owner 1		TP
OwnerNum2	Owner Number 2		TP
OwnerPerc2	Owner 2		TP
OwnerNum3	Owner Number 3		TP
OwnerPerc3	Owner 3		TP

Field	Description	Desired Value	Source
OwnerNum4	Owner Number 4		TP
OwnerPerc4	Owner 4		TP
EMSType	Record type read from an EMS system		TP
EMSID	String ID for shunt used in EMS systems		TP
	Name of the DataMaintainer specifically assigned to this object. This can be blank		
DataMaintainerAssign	as well. For objects which inherit their DataMaintainer this will still be blank.	Blank – inherit from Substation object	TP
CTGRegHigh	Lowest high voltage threshold for automatic insertion	SS-7b	то
CTGRegLow	Highest low voltage threshold for automatic insertion	SS-7b	то

 Table 16:
 Shunt Data Requirements

10. WECC Data Submission

Avista Transmission Planning will make available models for its Planning Coordinator area reflecting data collected according to TP-SPP-04 to WECC to support creation of interconnection-wide cases. (MOD-032-1, R4)

The methods used to make the models available to WECC will follow the procedures outlined by the specific data request from WECC. The following section provides a guideline for preparing the data for typical submissions to WECC. It is expected the personnel with Avista Transmission Planning are actively engaged in the appropriate committees at WECC to be knowledgeable in the data collection process.

10.1. Pre-Run Data Submittal

- 1. WECC will provide a data request via email stating a scenario to be represented in the compilation of a WECC approved base case
- 2. Western Power Pool (WPP), acting as Area Coordinator will forward the data request email to all data representatives in Area 40 Northwest. The email will also contain a reference case² from which the base case will be created. If no changes to the reference case are made by any entity, the reference case will be used to represent Area 40 in the WECC approved base case.
- 3. Transmission Planning creates a new folder labeled by the case name within the Case Building folder on the shared drive.
- 4. Documents, files, emails, and notes shall be maintained in electronic format in Microsoft OneNote saved at in an appropriate location. All information should be in printout format, other than aux files, within OneNote. Refer to previously completed cases for examples of information to include.
 - a. Create a new page for the case being worked on and copy the case description sheet to this page.
 - b. Create a subpage and label it "Pre-run." Keep all notes and printouts of emails used during the pre-run stage of the process.

² A reference case is a previously approved WECC case used as the starting point for the case of interest.

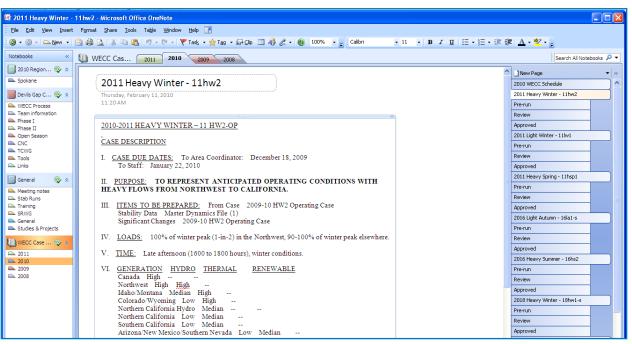


Figure 5: Microsoft OneNote Example

- 5. Review Data Request Letter from WECC to determine case description and due dates.
- 6. Save the reference case provided by the Area Coordinator in the new folder. (Download from WPP website through their secure FTP access)
- 7. Update Reference case with the latest Avista Master topology
 - a. Create the Difference Aux
 - i. Open the reference case file in PowerWorld
 - ii. Set Simulator's base case to the reference case
 - iii. Go to the Tools tab, click the Difference Case icon, and choose Set Present as Base
 - iv. Open the current Avista Master Case from the Case Building directory on the Transmission Planning drive
 - v. Set the Area/Zone filters to change only those facilities within Avista's Zones
 - vi. Go to the Difference Case icon and select Present Topological Differences from Base to show what facilities will be Removed/Added/Changed
 - vii. At the bottom of the display, click Save To then Complete Model
 - viii. From the Confirm Options dialogue, ensure All Lists is selected, click on Use Only Area/Zone/Owner Filters, deselect the Assume base Area/Zones... option, deselect the Include ClearPowerFlowSolutionAidValues Script Command option, choose the Complete Network Model format, and click OK
 - ix. Save the export as RefCaseName_AVA_Update.aux
 - b. Editing the Difference Aux

- The exported aux file needs to be edited in a text editor ensuring it does not Add/Remove/Change facilities belonging to another owner, like BPA
- With the Master Case still open and showing the Difference Tool, and the newly created aux file open in a text editor (Notepad++ is ideal), look for facility differences that do not belong to Avista and delete the line from the aux file.
- 8. Set loads to desired levels by doing the following with the Master Case:
 - a. Save a copy of the "AVA-[Case Year]-Forecast.xls" Load Forecasting spreadsheet in the Pre-Run folder and open it up.
 - b. In the "PowerWorld Sheet" tab, choose the season and year of the case from the dropdown boxes.

Н	M	N	C)	Р	Q
MVAR						
0.18		SEASON	YEAR			
2.83		Heavy Spring/Fall	_	2015		
0.51						
2.52						
0.84						
0.21						

Figure 6: Excel Data Selection Example

- c. Make sure 'Automatic' is selected under "Calculation Options" or Excel will not change values to match your selection.
- d. In PowerWorld, go to Model Explorer and open the Load Records tab under the Network folder. Right-click anywhere in the Loads sheet and paste the load data; the location of the right-click is not critical as PowerWorld will recognize the load data being pasted.
- e. Once the loads are pasted into PowerWorld, use the AUX File Export Format Description tool to save the required load information in aux file format for documented record of the load values used to create the WECC base case. Select the "Base Case Submittal Export" format from the dropdown list next to "Name" in the popup window and click the Create AUX File with Specified Format button. Save as "AVA-'case'-Loads.aux" in the Pre-run folder.

Case	р 🖡 🐺 🕅 🏭			012 (11hs2a). pwb .dd Ons Window	_		
It Mode	Model Explorer Area/Zone Filters Limit Monitoring	Network * Aggregation * Solution Details *	JX Difference Flow	Case Summar	y Quick Pov	ow List wer Flow List rt Format Desc	Bus View Substation View
Mode	Case Infor			Case Da	ta		Views
		Base Case Submittal	Format Description Export ve Save As	Rename Delete	Save AU		Format for plete Case
		t Object Type	Move Up Move Do	vn LoadAvista Native	e Loads) Modify	SubData	Modify
			eta Matiwe Loard	Number of Bus ID MW/MW 5 (Cons Mvar/Mvar 3 (Co		Click on Modify	to add subdata
		Ereate AUX File with Sp	ecified Format	Exporting	Total Digits 1 Dec Places		

Figure 7: PowerWorld Auxiliary File Export Window

- Copy WECC_Case-AVA-MasterAux.aux file from the Aux Files folder into case working directory. This file will be used to document all modifications applied to the reference case to create the desired case information which will be submitted to WECC.
- 10. Open the file for editing and do the following:
 - a. Some aux files, like the winter star point changes, may need to be commented for the particular reference case.
 - b. Case names, like for the load aux, need to be changed to the working reference case name.
 - c. Note the aux files referenced in the MasterAux and copy these files to the Pre-run directory. Presently, the following files should always be included:
 - i. Topology fixes
 - 1. Avista_ReferenceCase_Updates.aux created above
 - ii. Scenario variations
 - 1. For winter cases, star-point on Devil's Gap Stratford needs to be moved.
 - 2. Generator dispatch aux file
 - 3. Voltage Regulation dispatch aux file
 - a. Use Light Summer aux for Heavy Spring cases
 - 4. Loads aux file created in step 9. (Name will probably need to be changed to correct name so that aux file created will be opened.)

- 11. Open reference case in PowerWorld and run the WECC_Case-AVA-MasterAux.aux file. Review the PowerWorld log and the resulting case and check the case for errors.
- 12. Open the Replog.xlsx file and check for Avista issues
- 13. Reply to Area Coordinator request email. Attach the required aux files and provide description in the email to what the aux files will do. Also provide any guidance on what neighboring data submitters should look for if something specific was noticed. Avista cannot submit any data to the Area Coordinator that is not their responsibility.

10.2. Review Data Submittal

- 1. WECC will provide an action request email to review a WECC base case prior to it being approved.
- 2. Create new folder labeled by the case names within the Case Building folder on the share drive.
- 3. Create a subpage in the case OneNote notebook and label it "Review." Keep all notes and printouts of emails used during the review stage of the process.
- 4. Download case from WPP FTP site and save in folder above.
- 5. Open case in PowerWorld.
- 6. Browse case for errors, desired flows, load, and generation levels, and ensure all changes submitted in the pre-run process were incorporated.
- 7. If changes are necessary, create an aux file to fix the changes. Test that the file works appropriately in PowerWorld.
- 8. Have Case Signoff sheets filled out. Scan and save file in the case Review folder. Also copy into OneNote notebook.
- 9. Send copy of signoff sheets to the Area Coordinator and include description of any desired changes and the necessary files to make the changes.

11. Planning Case Development

Avista Transmission Planning should develop and maintain base cases (Planning Cases) biannually to model its Transmission Planner and Planning Coordinator areas as well as the regional Transmission System. The Planning Cases will be used to perform studies as needed to complete Planning Assessments, Corrective Action Plans, Large Generator Interconnection Requests Studies, and various other studies. The resulting Planning Cases will represent a normal System condition (N-0). The following section provides a guideline for preparing Planning Cases.

- 1. Use WECC Approved Base Case as starting point.
- 2. Update topology data for Avista's Planning Coordinator area to reflect most up to date information.
- 3. Correct any data issues within neighboring Planning Coordinator areas.
- 4. Set generator dispatch to desired scenario.
- 5. Set loads to desired values for scenario.

AVISTA

- 6. Adjust additional Area generation to balance Area slack generator. Changing Area interchange values may be helpful.
- 7. Review and update voltage control set points for the specific scenario being represented.
- 8. Load all dynamics data including the most up to date data for Avista's Planning Coordinator area.
- 9. Load all related contingency data (steady state and transient.)
- 10. Validate case in the Transient Stability Analysis Tool
 - a. Run auto correction. This will correct time step issues among other things. The default time step is 0.5 cycles. Changing the time step from the default will require reloading the dynamics data and re-validating.

C Transient Stability Analy	sis
Simulation Status Not Initialized	
Run Transient Stability Paus	e Abort Restore Reference For Contingency: My Transient Contingency
 Select Step im Simulation 	Validation
⊕ Options ⊕ Result Storage ⊕ Plots	Run Validation Image: Strate
	Validation Errors Validation Warnings Informational Messages
⊕- States/Manual Control ⊕- Validation	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
····· SMIB Eigenvalues	Element Type General Type Model Type Who Am I Validation M

Figure 8: PowerWorld Transient Stability Analysis Validation Control

- b. Check Validation Errors and correct as necessary. Often Governor models show up with errors which can be mitigated by simply turning those models off.
- c. Try running a flat line no disturbance simulation to see if there are modeling issues to be addressed. If the results are not stable, review the Results from RAM – Solution Details. Buses showing mismatch may have models causing problems. Try turning the model off and rerunning simulations.

TP-SPP-04 Data for Power System Modeling and Analysis

nulation Status Finished at 2.000							
Run Transient Stability Pause	Abort Restore Refe	For Contin	igency: 0: Flat Lii	ne	*		
elect Step	Results from RAM						
Simulation				olution Details			
Control	Time Values Minimum/Ma>	kimum values 🛛 Sum	imary Events				
Definitions Violations	i 🛄 🎬 ≯k tos ÷00	A A ABCD	ecords ▼ Set ▼	Columns 🔻 📴	• AUXD • AUXD •	🌱 🏥 ▼ SORT I24 ABED f(X	() = 🏢 🖕
Options Result Storage	Contingency Name	Time	Mismatch 1	Mismatch 2	Mismatch Bus 1	Mismatch Bus 2	# Jacobian Factorizations 1 F
+ Plots	1 0: Flat Line	0.000	0.000	0.000	47801	0	0
Results from RAM	2 0: Flat Line	0.008	0.001	0.000	7801	0	o o
⊞- Time Values	3 0: Flat Line	0.017	0.001	0.000			
🗄 Minimum/Maximum Values	4 0: Flat Line	0.025	0.002	0.000	47801	47801	1
Summary	5 0: Flat Line	0.033	0.001	0.000	47801	0	0
🖕 Events	6 0: Flat Line	0.042	0.001	0.000	47801	47801	0
Solution Details	7 0: Flat Line	0.050	0.001	0.000	47801	0	0
+ Transler Linit Floritors	8 0: Flat Line	0.058	0.002	0.000	47801	47802	0
- States/Manual Control	9 0: Flat Line	0.067	0.001	0.000	47801	0	0
+ Validation	10 0: Flat Line	0.075	0.001	0.000	47801	47802	0
SMIB Eigenvalues	11 0: Flat Line	0.083	0.001	0.000	47802	0 47801	
Si ito Eigennaides	12 0: Flat Line 13 0: Flat Line	0.092	0.002	0.000	47802 47802	47801	0
	14 0: Flat Line	0.100	0.001	0.000	47802	47801	0
	15 0: Flat Line	0.117	0.001	0.000	47802		0
	16 0: Flat Line	0.125	0.001	0.000	47802		0
	17 0: Flat Line	0.133	0.001	0.000	47802	0	ő
	18 0: Flat Line	0.142	0.001	0.000	47802		Ő
	19 0: Flat Line	0.150	0.001	0.000	47802	47802	0
	20 0: Flat Line	0.158	0.000	0.000	47801	0	0
	21 0: Flat Line	0.167	0.001	0.000	47801	47802	0
	22 0: Flat Line	0.175	0.001	0.000	47802	0	0
rocess Contingencies	<						>
One Contingency at a time							
Multiple Contingencies	Load from Hard Drive Fil	le into RAM results	specified by Store	to RAM Options	Clear Results i	n RAM	

Figure 9: PowerWorld Solution Details Window

11. Document all modifications and additional data used to create the Planning Case in aux files for easy replication of the process.

12. Appendix – Sample Data

12.1. Sample Transformer Test Report

Customer	of Transform			ico, S.A. DE	Cust. Order #	020412		FPT Order	4 801105	R SUBSTATION		Page 1	
est Date:			Cooling:.	OA / FA1 / F		Hz: 60	Phases:			g Fluid: OIL		FP S/N: Temp rise:	TP - 542 55°C // 65°
Winding		HIGH VOLT	AGE	LOW	VOLTAGE	TER	TIARY VO	LTAGE]				
MVA		150 / 200 / 250 // 280.0		150 / 200 / 250 // 280.0		33.3 / 44.4 / 55.5 // 62.2		4					
kV 236.5 / 136.543 (Y) Taps,OC ±4.65 % in 16 Steps		112.75 / 65.096 (Y) +4.88 - 5.23 % in 4 Steps			13.80 (Δ)		-						
Resis	tance, Exciti on normal ra	ting, unless	otherwise sta	ted. Losses ar	nd regulation are		attmeter m	easurements					
		sistance in o		% exciting	No-load	HV: 23	6.5 KV	HV: 23	6.5 KV	LV: 112	2.75 KV	Г	
SERIAL		75°C		current at	kW at	LV: 112.75 KV		TV: 13	8 KV TV: 13.				
NUMBER	1			100%	100%	250.0 MVA		250.0	MVA			1	
	HV (H-X)	LV (X - H0X0) T.V.	ated voltage @MVA: 150	rated voltage 20°C	Load loss kW, 75°C	% IZ	Load loss kW, 75°C	% IZ	Load loss kW, 75°C	% IZ	4	
TP-542	0.410514	0.124594	0.039977	0.0508	74.16	267.79	7.01	1919.71	48.04	1856.12	39.03		
		Calculated		0.16	73.5	302.08	7.13	2136.60		2098.04		1	
		Guarantee			74.0	311.11	6.8		45.0		37.0]	
	% Reg		°C, H.V. TAP MVA, Laggin	N, L.V. TAP 3	100 %			90 % PF		80 % 2.63 /		4	
Winding	κv	MVA	Amperes	Rise of winding by resistance, *C	Guarantee °C	Fluid ris Average	e, °C Top	Ambient	Temperat	ure, °C Room	Rise	USG/min	Pounds
HV	225.5	150.0	384.05	37.69	55.0	30.17	37.66	ingoing	ale.	25.98	Rise	USG/min	pressure
- LV	106.85	150.0	810.51	37.62	55.0	30.17	37.66			26.00			
HV	225.5	280.0	716.89	49.92	65.0	33.41	48.78			29.60			
LV	106.85	280.0	1512.94	50.78	65.0	33.41	48.78			29.98			
τv	13.8	62.2	2602.3	44.06	65.0	33.41	48.78			30.75			
Dielectri	c Tests						,	Remarks:					
		Impuls			Applied Volta	ige Tests							
Dicicou				Chopped	Applied	Duration							
Diciou		Winding	Full wave level	Wave level	Voltage	(seconds)							
			level kV	Wave level	Voltage kV	(seconds)							
		H.V.	level kV 751.7	Wave level kV 825.7	Voltage kV	(seconds)							
Lightning	Impulse		level kV	Wave level	Voltage kV	(seconds)							
	Impulse	H.V. L.V.	level kV 751.7 450.7	Wave level kV 825.7 495.4	Voltage kV 	(seconds)							
	ı Impulse	H.V. L.V. H.V. (H0) T.V.	level kV 751.7 450.7 150.8 109.8	Wave level kV 825.7 495.4 121.2	Voltage kV 	(seconds)							
		H.V. L.V. H.V. (H0)	level kV 751.7 450.7 150.8	Wave level kV 825.7 495.4 	Voltage kV 	(seconds)							
Lightning		H.V. L.V. H.V. (H0) T.V.	level kV 751.7 450.7 150.8 109.8	Wave level kV 825.7 495.4 121.2 	Voltage kV 	(seconds)							
Lightning Switching	Impulse	H.V. L.V. H.V. (H0) T.V. H.V. L.V.	level kV 751.7 450.7 150.8 109.8 	Wave level kV 825.7 495.4 121.2 	Voltage kV	(seconds)							
Lightning	Impulse	H.V. L.V. H.V. (H0) T.V. H.V.	level kV 751.7 450.7 150.8 109.8 	Wave level kV 825.7 495.4 121.2 	Voltage kV 	(seconds) 60.0							
Lightning		H.V. L.V. H.V. (H0) T.V.	level kV 751.7 450.7 150.8 109.8 	Wave level kV 825.7 495.4 121.2 	Voltage kV	(seconds)							
Lightning Switching	Voltage	H.V. L.V. H.V. (H0) T.V. H.V. L.V. T.V.	level kV 751.7 450.7 150.8 109.8 <	Wave level kV 825.7 495.4 121.2	Voltage kV 	(seconds)							

Figure 10: Sample Transformer Test Report

TP-SPP-04 Data for Power System Modeling and Analysis	2024
12.2. Sample Calculations	
From test report $\begin{cases} Load_Loss = 267.79 \text{kW} \\ Rated_MVA = 250 \text{MW} \\ Z_{xfmr} = 0.0701 \text{pu}_{xfmr} \end{cases}$	(1)
$Rxfbase = \frac{267.79 \text{kW}}{1000.250 \text{MVA}} = 0.00107 \text{pu}_{xfmr}$	(2)
$Xxfbase = \sqrt{[0.0701 \text{pu}_{xfmr}]^2 - 0.00107^2} = 0.07009 \text{pu}_{xfmr}$	(3)
$TapFixedFrom = \frac{236.5kV}{236.5kV} = 1.0000pu_{xfmr}$ $TapFixedTo = \frac{115.5kV}{112.75kV} = 1.0244pu_{xfmr}$	(4)
$TapMinxfbase = \frac{225.5kV}{236.5kV} = 0.9535pu_{xfmr}$ $TapMaxxfbase = \frac{247.5kV}{236.5kV} = 1.0465pu_{xfmr}$	(5)
$TapStepSizexfbase = \frac{(247.5kV - 225.5kV)}{236.5kV \cdot 16} = 0.00581pu_{xfmr}$	(6)