

POWER SYSTEMS DIVISION GRID SYSTEMS CONSULTING

STABILITY ANALYSIS FOR FACILITY STUDY OF PID-226

FINAL REPORT

REPORT NO.: 2009-E3350-R1 **Issued On**: August 19, 2009 **Revised on**: August 27, 2009 **Revised on**: February 19, 2010

Prepared for: Southwest Power Pool, Inc.

ABB Inc. Power Systems Division Grid Systems Consulting 940 Main Campus Drive, Suite 300 Raleigh, NC 27606

Legal Notice

This document, prepared by ABB Inc., is an account of work sponsored by Southwest Power Pool, Inc. (SPP). Neither SPP nor ABB Inc, nor any person or persons acting on behalf of either party: (i) makes any warranty or representation, expressed or implied, with respect to the use of any information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights, or (ii) assumes any liabilities with respect to the use of or for damages resulting from the use of any information, apparatus, method, or process disclosed in this document.

ABB Inc – Grid Systems Consulting

Technical Report

Southwest Power Pool, In	No. 2009-E3350-F	No. 2009-E3350-R1		
Facility Study for PID-226	Date: 8/21/2009	# Pages 45		
Author(s): Trinadh Dwibhashyam	Reviewed by: Amit Kekare	Approved by: Willie Wong		

Executive Summary

Southwest Power Pool, Inc (SPP) at the request of Entergy Services Inc. has commissioned ABB Inc. to perform a stability analysis for Facility study of PID-226, which is a request for 206 MW uprate of existing G. Gulf Unit #1 in the Entergy transmission system.

A system impact study for the PID-226 has previously been completed. The objective of this study was to supplement the stability analysis performed in the system impact study for PID-226 Project. To that end, selected faults at G. Gulf 500 kV substation were simulated and a Critical Clearing Time Analysis was performed at G. Gulf 500 kV substation. The study was performed on 2012 Summer Peak case, provided by SPP/Entergy.

The system was stable following all simulated normally cleared and stuck-breaker faults. No voltage criteria violation was observed following simulated faults.

The Critical Clearing times at G. Gulf 500 kV substations are within the capabilities of the existing protection systems. The smallest CCT at G. Gulf 500 kV substation was 5 + 15 cycles for a fault involving loss of G. Gulf – B. Wilson 500 kV.

Based on the results of stability analysis it can be concluded that proposed PID-226 project does not adversely impact the stability of the Entergy System in the local area. Also, PID-226 does not adversely impact the Critical Clearing time at G. Gulf 500 kV substations. Hence, no transmission reinforcements and/ or upgrades were identified for the interconnection of the PID-226 project.

The results of this analysis are based on available data and assumptions made at the time of conducting this study. If any of the data and/or assumptions made in developing the study model change, the results provided in this report may not apply.

Rev No.	Revision Description	Date	Authored by	Reviewed by	Approved by
0	Draft Report	8/21/09	Trinadh	A. Kekare	W. Wong
1	Updated per Entergy comments	8/27/09	Trinadh	A. Kekare	W. Wong
2	Updated for Ray Braswell 500 kV fault results	02/19/10	Trinadh	A. Kekare	W. Wong
DISTRIBUTION: Daniel Epperson – Southwest Power Pool, Inc. Brad Finkbeiner – Southwest Power Pool, Inc.					
Mukun	d Chander – Ente	rgy Service	es Inc.		

TABLE OF CONTENTS

1	INTRODUCTION	6
2	STABILITY ANALYSIS	7
2.1	STABILITY ANALYSIS METHODOLOGY	7
2.2	STUDY MODEL DEVELOPMENT	9
2.3	TRANSIENT STABILITY ANALYSIS	12
2.4	CRITICAL CLEARING TIME ANALYSIS	24
3	CONCLUSIONS	27
APPENDIX A	DATA PROVIDED BY CUSTOMER	28
APPENDIX B	LOAD FLOW AND STABILITY DATA IN PSSE FORMAT	43
APPENDIX C	PLOTS FOR STABILITY SIMULATIONS	45

1 INTRODUCTION

Southwest Power Pool, Inc. (SPP) at the request of Entergy Services Inc. has commissioned ABB Inc. to perform a stability analysis for Facility Study of PID-226, which is a request for 206 MW uprate of the existing G. Gulf Unit in the Entergy transmission system.

A system impact study¹ for the PID-226 has previously been completed. The objective of this study was to supplement the stability analysis performed in the system impact study for PID-226 Project. The study was performed on 2012 Summer Peak case, provided by Entergy. Figure 1-1 shows the location of the G. Gulf Unit with proposed 206 MW increase of generation.

Figure 1-1 PID 226 Project location

¹ "Stability Analysis for PID-226 System Impact study", March 30, 2009

2 STABILITY ANALYSIS

2.1 STABILITY ANALYSIS METHODOLOGY

Using Planning Standards approved by NERC, the following stability definition was applied in the Transient Stability Analysis:

"Power system stability is defined as that condition in which the differences of the angular positions of synchronous machine rotors become constant following an aperiodic system disturbance."

Stability analysis was performed using Siemens-PTI's PSS/E[™] dynamics program V30.3.2. Three-phase and single-phase line faults were simulated for the specified duration and synchronous machine rotor angles and wind turbine generator speeds were monitored to check whether synchronism is maintained following fault removal.

Based on the Entergy study criteria, three-phase faults with normal clearing and delayed clearing were simulated.

Stability analysis was performed using the PSS/E dynamics program, which only simulates the positive sequence network. Unbalanced faults involve the positive, negative, and zero sequence networks. For unbalanced faults, the equivalent fault admittance must be inserted in the PSS/E positive sequence model between the faulted bus and ground to simulate the effect of the negative and zero sequence networks. For a single-line-to-ground (SLG) fault, the fault admittance equals the inverse of the sum of the positive, negative and zero sequence Thevenin impedances at the faulted bus. Since PSS/E inherently models the positive sequence fault impedance, the sum of the negative and zero sequence Thevenin impedances needs to be added and entered as the fault impedance at the faulted bus.

For three-phase faults, a fault admittance of –j2E9 is used (essentially infinite admittance or zero impedance). For the single phase stuck breaker faults, the fault admittances considered are mentioned in Table 2-4.

Transient Voltage Criteria

In addition to criteria for the stability of the machines, Entergy has evaluation criteria for the transient voltage dip as follows:

- 3-phase fault or single-line-ground fault with normal clearing resulting in the loss of a single component (generator, transmission circuit or transformer) or a loss of a single component without fault: Not to exceed 20% for more than 20 cycles at any bus Not to exceed 25% at any load bus Not to exceed 30% at any non-load bus
- 3-phase faults with normal clearing resulting in the loss of two or more components (generator, transmission circuit or transformer), and SLG fault with delayed clearing resulting in the loss of one or more components:

Not to exceed 20% for more than 40 cycles at any bus Not to exceed 30% at any bus

The duration of the transient voltage dip excludes the duration of the fault. The transient voltage dip criteria will not be applied to three-phase faults followed by stuck breaker conditions unless the determined impact is extremely widespread.

The voltages at all local buses (above 115 kV) were monitored during each of the fault cases as appropriate.

As there is no specific voltage dip criteria for three-phase stuck breaker faults, the results of these faults were compared with the most stringent voltage dip criteria of - not to exceed 20 % for more than 20 cycles.

Critical Clearing Time (CCT) Analysis

An evaluation of the critical clearing times was carried out for faults on lines and transformers in the G. Gulf 500 kV substation

Critical Clearing Time assessment was performed on 2012 summer peak system conditions.

Critical Clearing Time (CCT) was calculated for a three-phase stuck-breaker fault on each branch connected to G. Gulf 500 kV substation. CCT is defined as the longest fault clearing time for which stability is maintained.

Independent pole operation (IPO) was assumed for breakers in both switchyards, with breaker failure occurring on only a single phase. This results in a three-phase fault becoming a single-phase fault at the normal clearing time. The single phase fault is then cleared by backup protection.

The Normal Clearing Time was kept equal to the normal value (5 cycles on 500 kV and 6 cycles on 230 kV) and the backup clearing time was varied to find the CCT. All machines in the Entergy system were monitored for stability.

2.2 STUDY MODEL DEVELOPMENT

The study model consists of power flow cases and dynamics databases, developed as follows.

Power Flow Case

A Powerflow case "EN12S08_Final_U2_With Upgrades_unconv.sav" representing the 2012 Summer Peak conditions was provided by SPP/ Entergy.

Two prior-queued projects, PID-223 and PID-224, were added to the base case. Thus a pre-project powerflow case was established and named as 'PRE-PID-226.sav'.

The proposed PID-226 project is a 206 MW uprate at G. Gulf Unit. The additional 206 MW was dispatched against the White Bluff Unit #1. Table 2-1_summarizes the dispatch. Thus a post-project power flow case with PID-226 was established and named as 'POST-PID-226.sav'.

System condition	MW	Point of Interconnection	Sink			
2012 Summer Peak	206	G. Gulf (#336821)	White Bluff Unit 1 (#337652)			

Table 2-1 PID-226 project details

Figure 2-1 shows the PSS/E one-line diagram for the local area WITH the PID-226 project, for 2012 Summer Peak system conditions.

Stability Database

A base case stability database was provided by SPP/Entergy in a PSSE *.dyr file format ('red11S_newnum.dyr').

To create a dynamic database (a snapshot file) for PRE-PID-226 powerflow case, stability data for PID-223 and PID-224 and the dynamic data in 'dystop.dyr' was appended to the base case stability database.

After the proposed uprate of the G. Gulf unit the total MW output of the plant will be 1544 MW, higher than the existing maximum limit (0.90 p.u. on 1600 MVA) on the Governor. For the stability analysis purpose, to avoid the initial condition errors, the limit was changed from 0.90 p.u to 0.97 p.u. on 1600 MVA base. Given the large system under consideration impact of such assumption will not be significant. The pre-project stability database was updated to create dynamic database for Post-PID-226 powerflow case.

The data provided at the Interconnection Request for PID-226 is included in Appendix A. The PSS/E power flow and stability data for PID-226, used for this study, are included in Appendix B.

Figure 2-1 One-line Diagram of the local area without PID-226 (2012 Summer Peak)

Figure 2-2 One-line Diagram of the local area with PID-226 (2012 Summer Peak)

2.3 TRANSIENT STABILITY ANALYSIS

Stability simulations were run to examine the transient behavior of the G. Gulf Unit and impact of the proposed uprate on the Entergy system. Stability analysis was performed using the following procedure. First, three-phase faults with normal clearing were simulated. Next, the three-phase stuck breaker (IPO: 3PH-1PH) faults were simulated. The fault clearing times used for the simulations are given inTable 2-2.

Table 2-2. Fault Cleaning Times					
Contingency at kV level	Normal Clearing	Delayed Clearing			
500	5 cycles	5+9 cycles			

The breaker failure scenario was simulated with the following sequence of events:

1) At the normal clearing time for the primary breakers, the faulted line is tripped at the far end from the fault by normal breaker opening.

2) The fault remains in place for Three-phase stuck-breaker (IPO: 3PH-1PH) faults. The fault admittances is changed to Thevenin equivalent admittance of single phase faults.

3) The fault is then cleared by back-up clearing. If the system was found to be unstable, then the fault was repeated without the proposed PID-226 project.

All line trips are assumed to be permanent (i.e. no high speed re-closure).

Table 2-3 and Table 2-4 list all the fault cases that were simulated in this study.

Fifteen (15) three phase normally cleared and twenty seven (27) three-phase stuck breaker converted into single-line-to-ground fault (following Independent Pole Operation of breakers) were simulated.

For all cases analyzed, the initial disturbance was applied at t = 0.1 seconds. The breaker clearing was applied at the appropriate time following this fault inception.

CASE	LOCATION	TYPE	CLEARING TIME (cycles)	BREAKER TRIP #	TRIPPED FACILITIES
FAULT-1	G. Gulf - B. Wilson 500 kV	3 PH	5	J5224, J5216, J2240, J2244	G. Gulf - B. Wilson 500 kV
FAULT-2	G. Gulf - Franklin 500 kV	3 PH	5	J2425, J2420, J5248, J5240	G. Gulf - Franklin 500 kV
FAULT-3	B. Wilson - Perryville 500 kV	3 PH	5	R7372,R9872, J2233, J2218	B. Wilson - Perryville 500 kV
FAULT-4	B. Wilson - Ray Braswell 500 kV	3 PH	5	J4928, J4920, J2230, J2233	B. Wilson - Ray Braswell 500 kV
FAULT-5	B. Wilson 500/115 kV transformer #1	3 PH	5	J2214, J2222,	B. Wilson 500/115 kV transformer #1
FAULT-6	Ray Braswell - Franklin 500 kV	3 PH	5	J2404, J2408, J4908, J4904	Ray Braswell - Franklin 500 kV
FAULT-7	Ray Braswell - Lakeover 500 kV	3 PH	5	J4928,J4908, J9218, J9234	Ray Braswell - Lakeover 500 kV
FAULT-8	Ray Braswell - B. Wilson 500 kV	3 PH	5	J4928, J4920, J2230, J2233	Ray Braswell - B. Wilson 500 kV
FAULT-9	Ray Braswell 500/ 115 kV Transformer #1	3 PH	5	J4904, J4917	Ray Braswell 500/ 115 kV Transformer #1
FAULT-10	Ray Braswell 500/ 230 kV Transformer #1	3 PH	5	J4917, J4920	Ray Braswell 500/ 230 kV Transformer #1
FAULT-11	Franklin - McKinight 500 kV	3 PH	5	BRK#21105, BRK#21110, J2416,2412	Franklin - McKinight 500 kV
FAULT-12	Franklin - Bogal USA - Adams Creek 500 kV	3 PH	5	S4402, S4405, J2416, J2420	Franklin - Bogal USA - Adams Creek 500 kV
FAULT-13	Franklin - Ray Braswell 500 kV	3 PH	5	J2404, J2408, J4908, J4904	Franklin - Ray Braswell 500 kV
FAULT-14	Franklin - G. Gulf 500 kv	3 PH	5	J2425, J2420, J5248, J5240	Franklin - G. Gulf 500 kv
FAULT-15	Franklin 500/115 kV transformer #1	3 PH	5	J2425, J2404	Franklin 500/115 kV transformer #1

Table 2-3 List of 3 Phase faults simulated for stability analysis

CASE	LOCATION	TYPE	CLEARING (cycle	S TIME s)	SLG FAULT	STUCK BREAKER	PRIMARY BREAKER	SECONDARY BREAKER	TRIPPED FACILITIES
			PRIMARY	Back- up	(MVA)	#	TRIP #	TRIP	
FAULT-1a	G. Gulf - B. Wilson 500 kV	3 PH/SLG	5	9	640.02- j8505.34	J5224	J5216, J2240, J2244	J5208, J5236, J5248	G. Gulf - B. Wilson 500 kV
FAULT-2b	G. Gulf - Franklin 500 kV	3 PH/SLG	5	9	640.02- j8505.34	J5248	J2425, J2420, J5240	J5208, J5236, J5224	G. Gulf - Franklin 500 kV
FAULT-3a	B. Wilson - Perryville 500 kV	3 PH/SLG	5	9	779.96- j8641.41	J2233	R7372,R9872, J2218	J2230, J4928, J4920	B. Wilson - Perryville 500 kV; B. wilson Ray Braswell 500 kV
FAULT-3b	B. Wilson - Perryville 500 kV	3 PH/SLG	5	9	779.96- j8641.41	J2218	R7372,R9872, J2233	J2214, J2252, J2225	B. Wilson - Perryville 500 kV; B. Wilson 500/115 kV transformer#1
FAULT-4a	B. Wilson - Ray Braswell 500 kV	3 PH/SLG	5	9	779.96- j8641.41	J2233	J4928, J4920, J2230	R7372,R9872, J2218	B. Wilson - Ray Braswell 500 kV; B. Wilson - Perryville 500 kV
FAULT-4b	B. Wilson - Ray Braswell 500 kV	3 PH/SLG	5	9	779.96- j8641.41	J2230	J4928, J4920, J2233	J2240, J2236, J2222	B. Wilson - Ray Braswell 500 kV
FAULT-5a	B. Wilson 500/115 kV transformer #1	3 PH/SLG	5	9	779.96- j8641.41	J2214	J2222	J2218, J2252, J2225	B. Wilson 500/115 kV transformer #1
FAULT-6a	Ray Braswell - Franklin 500 kV	३ PH/SLG	ъ	ф	765.3- j6686.74	J4908	J2404, J2408, J4904	J4928, J9218, J9234	Ray Braswell - Franklin 500 kV; Ray Braswell - Lakeover 500 kV
FAULT-6b	Ray Braswell Franklin 500 kV	3 PH/SLG	ф	9	765.3- j6686.74	J4904	J2404, J2408, J4908	J4917	Ray Braswell - Franklin 500 Kv; Ray Braswell 500/115 kV transformer #1
FAULT-7a	Ray Braswell - Lakeover 500 kV	3 PH/SLG	5	9	765.3- j6686.74	J4928	J4908, J9218, J923 4	J2230, J2233, J4920	Ray Braswell - Lakeover 500 kV; Ray Braswell - B. Wilson 500 kV
FAULT-7b	Ray Braswell - Lakeover 500 kV	3 PH/SLG	5	ф	765.3- j6686.74	J4908	J4928, J9218, J9234	J4904, J2404, J2408	Ray Braswell - Lakeover 500 kV, Ray Braswell - Franklin 500 kV
FAULT-8a	Ray Braswell - B. Wilson 500 kV	३ PH/SLG	ъ	ф	765.3- j6686.74	J4928	J4920, J2230, J2233	J4908, J9218, J9234	Ray Braswell – B. Wilson 500 kV; Ray Braaswell – Lakeover 500 kV
FAULT-8b	Ray Braswell - B. Wilson 500 kV	3 PH/SLG	5	Ð	765.3- j6686.74	J4920	J4928, J2230, J2233	J4917	Ray Braswell – B. Wilson 500 kV; Ray Braswell 500/230 kV transformer #1
FAULT-9a	Ray Braswell 500/ 115 kV Transformer #1	3 PH/SLG	5	ð	765.3- j6686.74	J4904	J4917	J2404, J2408, J4908	Ray Braswell 500/ 115 kV Transformer #1; Ray Braswell – Franklin 500 kV

Table 2-4 List of 3 PhaseStuck Brekaer (IPO: 3PH-1PH) faults simulated for stability analysis

CASE	LOCATION	TYPE	CLEARING (cycle	S TIME s)	SLG FAULT	STUCK BREAKER	PRIMARY BREAKER	SECONDARY BREAKER	TRIPPED FACILITIES
			PRIMARY	Back- up	(MVA)	#	TRIP #	TRIP	
FAULT-9b	Ray Braswell 500/ 115 kV Transformer #1	3 PH/SLG	5	9	765.3- j6686.7 4	J4917	J4904	J4920	Ray Braswell 500/ 115 kV Transformer #1; Ray Braswell 500/230 kV transformer #1
FAULT-10a	Ray Braswell 500/ 230 kV Transformer #1	3 PH/SLG	5	9	765.3- j6686.74	J4920	J4917	J4928, J2230, J2233	Ray Braswell 500/ 230 kV Transformer #1; Ray Braswell - B. Wilson 500 kV
FAULT-10b	Ray Braswell 500/ 230 kV Transformer #1	3 PH/SLG	5	9	765.3- j6686.7 4	J4917	J4920	J4904	Ray Braswell 500/ 115 kV Transformer #1; Ray Braswell 500/230 kV transformer #1
FAULT-11a	Franklin - McKinight 500 kV	3 PH/SLG	5	9	823.73- j5887.89	J2416	BRK#21105, BRK#21110, J2412	J2420, S4402, S4405	Franklin - McKinight 500 kV; Franklin - Bogal USA - Adams Creek 500 kV
FAULT-11b	Franklin - McKinight 500 kV	3 PH/SLG	5	9	823.73- j5887.89	J2412	BRK#21105, BRK#21110, J2416	J2408	Franklin - McKinight 500 kV; Franklin 500/115 kV transformer #1
FAULT-12a	Franklin - Bogal USA - Adams Creek 500 kV	3 PH/SLG	5	9	823.73- j5887.89	J2416	S4402, S4405, J2420	BRK #21105, BRK#21110, J2412	Franklin - Bogal USA - Adams Creek 500 kV; Franklin - McKnight 500 kV
FAULT-12b	Franklin - Bogal USA - Adams Creek 500 kV	3 PH/SLG	5	9	823.73- j5887.89	J2420	S4402, S4405, J2416	J2420	Franklin - Bogal USA - Adams Creek 500 Kv; Franklin - G. Gulf 500 kV
FAULT-13a	Franklin - Ray Braswell 500 kV	3 PH/SLG	5	9	823.73- j5887.89	J2404	J2408, J4904, J4908	J2425	Franklin - Ray Braswell 500 Kv, Franklin 500/115 kV transformer #1
FAULT-13b	Franklin - Ray Braswell 500 kV	3 PH/SLG	5	9	823.73- j5887.89	J2408	J2404, J4908, J4904	J2412	Franklin - Ray Braswell 500 kV; Franklin 500/115 kV transformer #2
FAULT-14a	Franklin - G. Gulf 500 kv	3 PH/SLG	5	9	823.73- j5887.89	J2425	J2420, J5248, J5240	J2404	Franklin - G. Gulf 500 kV; Franklin 500/115 kV transformer #1
FAULT-14b	Franklin - G. Gulf 500 kv	3 PH/SLG	5	9	823.73- j5887.89	J2420	J5248, J5240, J2425	J2416, S4402, S4405	Franklin - G. Gulf 500 kV; Franklin - Bogal USA - Adams Creek 500 kV
FAULT-15a	Franklin 500/115 kV transformer #1	3 PH/SLG	5	9	823.73- j5887.89	J2404	J2425	J2408, J4904, J4908	Franklin 500/115 kV transformer #1; Franklin - Ray Braswell 500 kV
FAULT-15b	Franklin 500/115 kV transformer #1	3 PH/SLG	5	9	823.73- j5887.89	J2425	J2404	J2420, J5248, J5240	Franklin 500/115 kV transformer #1; Franklin - G. Gulf 500 kV

ABB

ABB

	F	PRE-PID226	POST-PID226			
CASE	Stable	Acceptable Voltages	Stable	Acceptable Voltages		
	? ?		?	?		
FAULT-1		Not tested	Y	Y		
FAULT-2		Not tested	Y	Y		
FAULT-3		Not tested	Y	Y		
FAULT-4		Not tested	Y	Y		
FAULT-5		Not tested	Y	Y		
FAULT-6		Not tested	Y	Y		
FAULT-7		Not tested	Y	Y		
FAULT-8		Not tested	Y	Y		
FAULT-9		Not tested	Y	Y		
FAULT-10		Not tested	Y	Y		
FAULT-11		Not tested	Y	Y		
FAULT-12		Not tested	Y	Y		
FAULT-13		Not tested	Y	Y		
FAULT-14		Not tested	Y	Y		
FAULT-15		Not tested	Y	Y		
FAULT-1a		Not tested	Y	Y		
FAULT-2b		Not tested	Y	Y		
FAULT-3a		Not tested	Y	Y		
FAULT-3b		Not tested	Y	Y		
FAULT-4a		Not tested	Y	Y		
FAULT-4b		Not tested	Y	Y		
FAULT-5a		Not tested	Y	Y		
FAULT-6a		Not tested	¥	¥		
FAULT-6b		Not tested	¥	¥		
FAULT-7a		Not tested	¥	¥		
FAULT-7b		Not tested	¥	¥		
FAULT-8a		Not tested	¥	¥		
FAULT-8b		Not tested	¥	¥		
FAULT-9a		Not tested	¥	¥		
FAULT-9b		Not tested	¥	¥		
FAULT-10a		Not tested	¥	¥		
FAULT-10b		Not tested		¥		
FAULT-11a	Not tested		Y	Y		
FAULT-11b	Not tested		Y	Y		
FAULT-12a	Not tested		Y	Y		
FAULT-12b	Not tested		Y	Y		
FAULT-13a		Not tested	Y	Y		
FAULT-13b		Not tested	Y	Y		
FAULT-14a		Not tested	Y	Y		
FAULT-14b		Not tested	Y	Y		
FAULT-15a		Not tested	Y	Y		
FAULT-15b		Not tested	Y	Y		

Table 2-5 Results of faults simulated for stability analysis

The system was found to be STABLE following all the simulated faults.

Figure 2-3 and Figure 2-4 show plots for the G. Gulf unit response and the voltage recovery at POI following two selected faults.

Transient Voltage Recovery

The voltages at all buses in the Entergy system (above 115 kV) were monitored during each of the fault cases as appropriate. No Voltage criteria violation was observed following a normally cleared three-phase fault.

As there are no specific voltage dip criteria for three-phase fault converted into singlephase stuck breaker faults, the results of these faults were compared with the most stringent voltage dip criteria - not to exceed 20 % for more than 20 cycles. After comparison against the voltage-criteria, no voltage criteria violation was observed with the proposed uprate of G. Gulf unit (PID-226) case.

Figure 2-3 PID-226 Machine parameters for FLT_1_3PH

Figure 2-4 PID-226 Machine parameters for Fault _14_3PH

2.4 CRITICAL CLEARING TIME ANALYSIS

Evaluation of Critical Clearing Time (CCT) was carried out for faults at G. Gulf 500 kV substation. Two 3 phase stuck breaker (IPO operation) faults - Fault 1a and Fault 2b - at G. Gulf 500 kV substation were considered.

The primary Clearing Time was kept equal to the normal value (5 cycles on 500 kV and 6 cycles on 230 kV) and the backup clearing time was varied to find the CCT.

Table 2-6 shows the Critical Clearing Times calculated for the simulated faults with PID-222. Figure 2-5 and Figure 2-6 shows the excursions in the speed of G. Gulf unit following the two faults for both, WITH and WITHOUT PID-226 project.

			CCT (in avalaa)	
			CCT (in cycles)	
CASE		Primary	Back-up	Clearing
CASE	LOCATION	clearing	WITHOUT	WITH PID-226
		oleaning	PID-226	WITTI ID-220
FAULT_1a	G. Gulf - B. Wilson 500 kV	5	41	15
FAULT_2b	G. Gulf - Franklin 500 kV	5	46	18

Table 2-6: CCT Results

It can be seen from the results that the smallest CCT at G. Gulf 500 kV substation was 5 + 15 cycles for a fault involving loss of G. Gulf – B. Wilson 500 kV line. The lowest critical clearing time 20 cycles (=5 + 15 cycles) is still larger than Entergy's standard clearing time of14 cycles (= 5 + 9 cycles) for 500 kV breakers.

Based on the results of critical clearing time analysis it can be concluded that proposed PID-226 project (206 MW uprate of G. Gulf Unit#1) does not adversely impact the critical clearing at G. gulf 500 kV substation.

	POST-PID226 CASE
SIEMENS POWER TECHNOLOGIES INTERNATIONAL	3PH-1PH G.GULF 500KV G.GULF - B.WILSON 500KV

Figure 2-5 Critical Clearing Time comparison following Fault 1a

Figure 2-6 Critical Clearing Time comparison following Fault 2b

15.03

0000

с Л

3 CONCLUSIONS

Southwest Power Pool, Inc (SPP) at the request of Entergy Services Inc. has commissioned ABB Inc. to perform a stability analysis for Facility study of PID-226, which is a request for 206 MW uprate of existing G. Gulf Unit #1 in the Entergy transmission system.

A system impact study for the PID-226 has previously been completed. The objective of this study was to supplement the stability analysis performed in the system impact study for PID-226 Project. To that end, selected faults at G. Gulf 500 kV substation were simulated and a Critical Clearing Time Analysis was performed at G. Gulf 500 kV substation. The study was performed on 2012 Summer Peak case, provided by SPP/Entergy.

The system was stable following all simulated normally cleared and stuck-breaker faults. No voltage criteria violation was observed following simulated faults.

The Critical Clearing times at G. Gulf 500 kV substations are within the capabilities of the existing protection systems. The smallest CCT at G. Gulf 500 kV substation was 5 + 15 cycles for a fault involving loss of G. Gulf – B. Wilson 500 kV.

Based on the results of stability analysis it can be concluded that proposed PID-226 project does not adversely impact the stability of the Entergy System in the local area. Also, PID-226 does not adversely impact the Critical Clearing time at G. Gulf 500 kV substations. Hence, no transmission reinforcements and/ or upgrades were identified for the interconnection of the PID-226 project.

The results of this analysis are based on available data and assumptions made at the time of conducting this study. If any of the data and/or assumptions made in developing the study model change, the results provided in this report may not apply.

APPENDIX A DATA PROVIDED BY CUSTOMER

Attachment A to Appendix 1 Interconnection Request

LARGE GENERATING FACILITY DATA

UNIT RATINGS

kVA <u>1600000</u> °F <u>95</u>	Voltage <u>22000</u>
Power Factor 0.9 lag	
Speed (RPM) <u>1800</u>	Connection (e.g. Wye) <u>Wye</u>
Short Circuit Ratio	Frequency, Hertz 60
Stator Amperes at Rated kVA 41989	Field Volts
Max Turbine MW <u>1525</u> °F	95

COMBINED TURBINE-GENERATOR-EXCITER INERTIA DATA

Inertia Constant, H =	4.5112	kW sec/kVA
Moment-of-Inertia, $WR^2 =$	9644006	lb. ft. ²

REACTANCE DATA (PER UNIT-RATED KVA)

	DIRE	CT AXIS	QUADRATURE AXIS		
Synchronous – saturated Synchronous – unsaturated Transient – saturated Transient – unsaturated Subtransient – unsaturated Subtransient – unsaturated Negative Sequence – saturated Negative Sequence – unsaturated Zero Sequence – unsaturated	$\begin{array}{c} X_{dv} \\ X_{di} \\ X'_{dv} \\ X'_{di} \\ X''_{di} \\ X''_{di} \\ X2_v \\ X2_i \\ X0_v \\ X0_i \end{array}$	$\begin{array}{c} 1.292 \\ 1.551 \\ 0.380 \\ 0.417 \\ 0.243 \\ 0.288 \\ 0.249 \\ 0.295 \\ 0.181 \\ 0.151 \\ \end{array}$	$X_{qv} X_{qi} X'_{qi} X'_{qv} X'_{qi} X'_{qv} X'_{qi} X''_{qv} X''_{qi}$	$ \begin{array}{c} 1.258 \\ 1.473 \\ 0.751 \\ 0.832 \\ 0.255 \\ 0.302 \end{array} $	
Leakage Reactance	Xl_m	0.245			

FIELD TIME CONSTANT DATA (SEC)

Open Circuit	T' _{do}	6.286	T' _{go}	0.382
Three-Phase Short Circuit Transient	T' _{d3}	1.446	Tg	0.501
Line to Line Short Circuit Transient	T'_{d2}	2.062	4	
Line to Neutral Short Circuit Transient	T'_{d1}	2.211		
Short Circuit Subtransient	T"d	0.030	T"q	0.043
Open Circuit Subtransient	T" _{do}	_0.047	T" _{qo}	0.123

ARMATURE TIME CONSTANT DATA (SEC)

Three Phase Short Circuit	T_{a3}	0.361
Line to Line Short Circuit	T _{a2}	0.361
Line to Neutral Short Circuit	T_{al}	0.314

NOTE: If requested information is not applicable, indicate by marking "N/A."

MW CAPABILITY AND PLANT CONFIGURATION LARGE GENERATING FACILITY DATA

ARMATURE WINDING RESISTANCE DATA (PER UNIT)

Positive	\mathbf{R}_1	0.003656
Negative	R_2	0.04775
Zero	R_0	0.00253

Rotor Short Time Thermal Capacity $I_2^2 t = \underline{5.47}$ Field Current at Rated kVA, Armature Voltage and PF = <u>8580</u> amps Field Current at Rated kVA and Armature Voltage, $0 \text{ PF} = \underline{11400}$ amps Three Phase Armature Winding Capacitance = <u>1.464</u> microfarad Field Winding Resistance = <u>0.0405</u> ohms <u>20</u> °C Armature Winding Resistance (Per Phase) = <u>0.0004794</u> ohms <u>20</u> °C

CURVES

Provide Saturation, Vee, Reactive Capability, Capacity Temperature Correction curves. Designate normal and emergency Hydrogen Pressure operating range for multiple curves.

Please refer to Attachment 1.

GENERATOR STEP-UP TRANSFORMER DATA RATINGS

Capacity Self-cooled/Maximum Nameplate <u>1650000</u> / <u>1650000</u> kVA Voltage Ratio(Generator Side/System side/Tertiary) <u>20.9</u> / <u>500</u> / <u>none</u> kV

Fixed Taps Available +7.5% / +5% / +2.5% / 0 / -2.5%

Present Tap Setting Nominal

IMPEDANCE

Positive	Z_1 (on self-cooled kVA rating)_	0.1627	%	46.41	X/R
Zero	Z ₀ (on self-cooled kVA rating)_	0.1627	%	46.41	X/R

EXCITATION SYSTEM DATA

Identify appropriate IEEE model block diagram of excitation system and power system stabilizer (PSS) for computer representation in power system stability simulations and the corresponding excitation system and PSS constants for use in the model.

Please refer to attachment 2.

GOVERNOR SYSTEM DATA

Identify appropriate IEEE model block diagram of governor system for computer representation in power system stability simulations and the corresponding governor system constants for use in the model.

Please refer to attachment 3.

WIND GENERATORS

Number of generators to be interconnected pursuant to this Interconnection Request:

Elevation: _____ Single Phase ____ Three Phase

Inverter manufacturer, model name, number, and version:

List of adjustable setpoints for the protective equipment or software:

Note: A completed General Electric Company Power Systems Load Flow (PSLF) data sheet or other compatible formats, such as IEEE and PTI power flow models, must be supplied with the Interconnection Request. If other data sheets are more appropriate to the proposed device, then they shall be provided and discussed at Scoping Meeting.

INDUCTION GENERATORS

(*) Field Volts:

(*) Field Amperes:

(*) Motoring Power (kW):

(*) Neutral Grounding Resistor (If Applicable):

(*) I₂²t or K (Heating Time Constant):

(*) Rotor Resistance:

(*) Stator Resistance: _____

(*) Stator Reactance:

(*) Rotor Reactance:

(*) Magnetizing Reactance:

(*) Short Circuit Reactance:

(*) Exciting Current:

(*) Temperature Rise:

(*) Frame Size: _____

(*) Design Letter: ____

(*) Reactive Power Required In Vars (No Load):

(*) Reactive Power Required In Vars (Full Load):

(*) Total Rotating Inertia, H: _____ Per Unit on KVA Base

Note: Please consult Transmission Provider prior to submitting the Interconnection Request to determine if the information designated by (*) is required.

Grand Gulf 1 - Uprate

GENERATOR

V-Curves at Rated Voltage

ATTACHMENT 2 Sheet 1 of 5

GRAND GULF

IEEE TYPE AC5A EXCITATION	SYSTEM MODEL DATA
$K_{A} = 600 \text{ p.u.}$	$T_{A} = 0.10$ sec.
$K_{\rm F} = 0.02 {\rm p.u.}$	$T_{F1} = 1.0$ sec.
$T_{F2} = 0.13$ sec.	$T_{F3} = 0$
$T_{\rm E} = 0.22$ sec.	$T_R = 0.2$ sec.
$S_{E1} = 0.73$	$EFD_1 = 3.7 \text{ p.u.}$
$S_{E2} = 0.73$	$EFD_2 = 2.8 \text{ p.u.}$
$K_{\rm E} = 1.0 \rm p.u.$	
$V_{Rmax} = 6.4 \text{ p.u.}$	$V_{Rmin} = -6.4$ p.u.

IEEE Type AC5A Excitation System Model

Reference: IEEE Standard 421.5-2005, "IEEE Recommended Practice for Excitation System Models for Power System Stability Studies"

Excitation system model data 061120. By J.D. Hurley. 12-7153. 12-7154.doc Printed: 12/7/2006 2:02:21 PM

Siemens Westinghouse Confidential

ATTACHMENT 2 Sheet 2 of 5

Power Technologies, Inc.

Exciter and Governor Model Data Sheets

			IEEE	ESAC5A Type AC5A Excitation System
This model machine This model	is located at a	system bus		#IBUS, #I. #J,
CONs	#	Value	Description	
J		0.2	T _R (Seconds)	ECOMP
J+1		600	KA	VOTHSG
J+2		0.1	T _A (Seconds)	VUEL ESAC5A EFD
J+3		6.4	V RMAX Or Zero	1000
J+4		-6.4	V RMIN	VOEL
J+5		1	K E Or Zero	
J+6		0.22	T E > 0 (Seconds)	
J+7		0.02	K _F	
J+8		1.0	T F1 > 0 (Seconds)	
J+9		0.13	T F2 (Seconds)	
J+10		0	T _{F3} (Seconds)	
J+11		3.7	E1	
J+12		0.73	S _E (E ₁)	

IBUS, 'ESAC5A', I, TR, KA, TA, VRMAX, VRMIN, KE, TE, KF, TF1, TF2, TF3, E1, SE(E1), E2, SE(E2)/

2.8 E 2

0.73 S E (E2)

PSS/E 25

J+13

J+14

Program Operation Manual - Volume II VI-13

Page 1 of 1

ESAC5A-GrandGulf.xls

Site Specific Planning Model Inputs

ATTACHMENT 2 Sheet 3 of 5

SIEMENS

Excitation System Thyrisiem Computer Representation *)

1) According to IEEE

Fig.2.1.

ATTACHMENT 2 Sheet 4 of 5

Site Specific Planning Model Inputs

Steam Turbine Model for System Dynamic Studies for Grand Gulf

۴. ۲ T_{C0} = 2.75s Sierbens PG P11M3, Bennauer, 21 June 2005 <u>_</u>___ ∢ nulation started (pU) 2 : 0.35 = 0.25s : 0.65 Turbine $1+sT_{cc}$ P_M = Mechanical Power Steam Power Limits imposed by Valve: ٥ĉ Limits on Rate of Change of Po Control Valve Rate Limits: P_u HP Turbine Load Fraction F HP Turbine Time Constant 1 LP Turbine Load Fraction F LP Turbine and Cross-over F Power at Valve Outlet when Sim [₽] P_o = Initial Power v P_{ov} = Power at Val $\frac{1}{1+sT_{CH}}$. . °§ zee: "Dynamic Models for Sheam and Hydro Turbines in Power System Studies". IEEE Committee Report. 1873 No Consideration of Moreinearities of Main Steam Control Valve. IP-Valve Is £101 open. Pww 74 FLu. = -1 pU FLm = 1 pU 1.13 Down tă î ponse Low L ponse High L $K_V = 20$ $T_3 = 1.5s$ $T_3 = 0.15s$ R₁ = 0.05 ₹ Speed deviation ü Position-Controller Gain Control Valve Time Constant (Fast closing Res -12 g FL ₽₽ ₽₽ പ് Ē ã

ABB

ABB

ATTACHMENT 3 Sheet 1 of 2

Power Technologies, Inc.

Exciter and Governor Model Data Sheets

IEEEG1

IEEE Type 1 Speed-Governing Model

This model is located at system bus	1
machine	\$
This Mmodel may be located at system bus	\$
machine	\$
This model uses CONs starting with	1

NOTE: JBUS and JM are set to zero for non-cross compound.

	The second se
#	
#	0 JBUS,
#	0 M.
#	J,
is	a non-cross compound unit)

IBUS,

CONs	#	Value	Description	
J		12	к	
J+1		0	T ₁ (Seconds)	
J+2		0	T ₂ (Seconds)	
J+3		0.075	T ₃ (>0)(Seconds)	
J+4		0.60	U _o (p.u./Seconds)	
J+5		-0.60	U _c (<0.)(p.u./Seconds)	
J+6		0.9	P _{MAX} (p.u. on Machine	
			MVA Rating)	
J+7		0	P _{MIN} (p.u. on Machine	
			MVA Rating)	
J+8		0.25	T ₄ (Seconds)	
J+9		0.35	i K ₁	
J+10		0	K ₂	
J+11		2.75	T ₅ (Seconds)	
J+12		0.65	K3	
J+13		0	K4	
J+14		0	T ₆ (Seconds)	
J+15		0	K5	
J+16		0	K ₆	
J+17		0	T7(Seconds)	
J+18		0	K7	
J+19		0	K ₈	

(Note: this

Page 1 of 2

IEEEG1-Gov-GrandGulf-rev2.xls

ATTACHMENT 3 Sheet 2 of 2

Correct Model: Note that K3 is properly represented.

Gover: for Model Data Sheet; IEEEGI

Power Technologies, Inc.

Incorrect Model: Note that there are two blocks with K2 and no block with K3.

IBUS, 'IEEEG1', I, JBUS, M, K. T1, T2, T3, U6, Uc, PMAX, PMIN, T4, K1, K2, T5, K3, K4, T6, K5, K6, T7, K7, K6/

Page 2 of 2

IEEEG1-Gov-GrandGulf-rev2.xls

APPENDIX B LOAD FLOW AND STABILITY DATA IN PSSE FORMAT

Loadflow Data

336821,'1 ', 1544.000, 0.000, 330.000, -330.000,1.02000,336820, 1600.000, 0.003656, 0.2880, 0.00000, 0.00000,1.00000,1, 100.0, 1544.000, 150.000, 0.003656, 1,1.0000 1,1.0000 0 / END OF GENERATOR DATA, BEGIN BRANCH DATA 0 / END OF BRANCH DATA, BEGIN TRANSFORMER DATA 36820,336821, 0,'1 ',1,2,1, 0.00000, 0.00000,2,' 0.0035, 0.1627, 1650.00 1.00000, 0.000, 0.0000, 1650.00, 1650.00, 0, 1.07500, 0.97500, 5, 0, 0.00000, 0.00000 1.00000, 0.000 ',1, 1,1.0000 0, 1.07500, 0.97500, 1.00000, 0.000 0 / END OF TRANSFORMER DATA, BEGIN AREA DATA
0 / END OF AREA DATA, BEGIN TWO-TERMINAL DC DATA 0 / END OF TWO-TERMINAL DC DATA, BEGIN VSC DC LINE DATA 0 / END OF VSC DC LINE DATA, BEGIN SWITCHED SHUNT DATA 0 / END OF SWITCHED SHUNT DATA, BEGIN IMPEDANCE CORRECTION DATA 0 / END OF IMPEDANCE CORRECTION DATA, BEGIN MULTI-TERMINAL DC DATA 0 / END OF MULTI-TERMINAL DC DATA, $\stackrel{\scriptstyle \rm D}{\scriptstyle \rm BEGIN}$ MULTI-SECTION LINE DATA 0 / END OF MULTI-SECTION LINE DATA, BEGIN ZONE DATA 0 / END OF ZONE DATA, BEGIN INTER-AREA TRANSFER DATA / END OF INTER-AREA TRANSFER DATA, BEGIN OWNER DATA 0 0 / END OF OWNER DATA, BEGIN FACTS DEVICE DATA 0 / END OF FACTS DEVICE DATA **Dvnamics Data** REPORT FOR ALL MODELS BUS 336821 [GGULF 21.000] MODELS

** GENROU ** BUS X-- NAME --X BASEKV MC CONS STATES 336821 GGULF 21.000 1 130656-130669 51167-51172

 MBASE
 Z S O R C E
 X T R A N
 GENTAP

 1600.0
 0.00366+J 0.28800
 0.00000+J 0.00000
 1.00000

 T'D0
 T'Q0
 T'Q0
 H
 DAMP
 XD
 XQ
 X'D
 X'Q
 X'D
 XL

 6.29
 0.047
 0.38
 0.123
 4.51
 0.00
 1.5510
 1.4730
 0.4170
 0.8320
 0.2880
 0.2450

S(1.0) S(1.2) 0.2000 0.5000

** PSS2A ** BUS X-- NAME --X BASEKV MC CONS STATES VARS ICONS 336821 GGULF 21.000 1 130670-130686 51173-51188 8396-8399 4483-4488

IC1 REMBUS1 IC2 REMBUS2 M N 1 0 3 0 5 1 TW1 TW2 T6 TW3 TW4 T7 KS2 KS3 2.000 0.000 2.000 0.000 2.000 0.202 1.000

 T8
 T9
 KS1
 T1
 T2
 T3
 T4
 VSTMAX
 VSTMIN

 0.500
 0.100
 8.000
 0.150
 0.030
 0.150
 0.030
 0.100
 -0.100

** ESAC5A ** BUS X-- NAME --X BASEKV MC CONS STATES VAR 336821 GGULF 21.000 1 130687-130701 51189-51193 8400

 TR
 KA
 TA
 VRMAX
 VRMIN
 KE
 TE
 KF
 TF1
 TF2
 TF3

 0.200
 600.00
 0.100
 6.400
 -6.400
 1.000
 0.220
 0.020
 1.000
 0.130
 0.000

E1 S(E1) E2 S(E2) KE VAR 3.7000 0.7300 2.8000 0.7300 0.0000

** IEEEG	336821 SI	JS X NI . GGULF	AMEX 21	BASEKV .000 1	MC C	ONS -130721	SТАТ 51194-51	ES 199 8	V A R S 3401-8402
к	т1	т2	ሞ3	ΠŌ	UC PI	MAX PM	ТМ Т4	к1	
12.00	0.000	0.000	0.075	0.600	-0.600	0.9700	0.0000	0.250	0.350
К2	т5	К3	К4	Т6	К5	К6	т7 к7	к8	}
0.000	2.750	0.650	0.000	0.000	0.000	0.000	0.000	0.000	0.000

