Monticello-Fargo Line Update
NM/MB Subregional Planning Group
July 22, 2009
Monticello-Fargo Line Update

• Minnesota Certificate of Need for three 345 kV Group 1 projects approved April 16, 2009

• Monticello – St. Cloud 345 kV segment most critical
 – Load-serving needs in St. Cloud area
 – Route Permit filed April 8, 2009
 – In-service date planned December 2011

• Route option refinement for St. Cloud-Red River segment

• Minnesota Route Permit application expected to be filed in October 2009

• Planned in-service dates for remaining segments
 – St. Cloud – Alexandria: 2013
 – Alexandria – Fargo: 2015
Group 1 Projects
Extensive Effort by Utilities, Regulators, Stakeholders
Fargo Line Optimization Study

Background

- Twin Cities-Fargo 345 kV line is one of four CapX2020 Group 1 lines
 - Initially proposed in 2002 TIPS Study
 - Proposal refined in 2006 TIPS Update for CapX2020
- Preliminary study work assumed Maple River as northern termination
- Detailed routing work raised concerns about land use and routing constraints
 - Number of critical lines in Maple River
 - OTP/MPC Pillsbury Wind Farm 230 kV interconnection line
Fargo Line Optimization Study

Study purpose

- Study parameters
 - Northward and southward transfer capability
 - Thermal limits
 - Stability limits
 - Manitoba loop flow
- Fargo area load-serving needs
- Losses
- System reliability & integrity
- Land use/high level routing constraints/flooding
- Overall goal: develop coordinated plan for development of the Fargo line in North Dakota that considers all relevant aspects of transmission planning (load serving, generation delivery, overall system reliability and expansion)
Fargo Line Optimization Study
Study Modeling

• Primary case used for steady state analysis: Off-peak case from Corridor Study analysis
 – Also used RES Update Study & CVS Study
 – Up-to-date information from MISO and MRO model-building processes

• Interface flows modeled at maximum simultaneous
 – MHEX: 2175 MW
 – NDEX: 2080 MW
 – MWEX: 1525 MW

• Pillsbury-Maple River 230 kV line and 400 MW of Pillsbury generation added to model

• Frontier 230/69 kV Substation added and Minnkota load reconfigured
Fargo Line Optimization Study
Study Modeling

• Dynamic models
 – ND load at 65 percent of 2880 MW
 – NDEX at 2450 MW (includes Big Stone II and associated outlet)

• Summer 2016 Off-Peak Dynamic model includes:
 – Watertown and Groton capacitors
 – Big Stone II generation (657 MW gross) and outlet facilities
 – BRIGO facilities
 – Brookings County-Brookings 345 kV line
 – Hampton-Rochester-La Crosse 345 kV line
 – Bemidji-Grand Rapids 230 kV line
 – Queued generation

<table>
<thead>
<tr>
<th></th>
<th>Southwest MN wind at 1800MW</th>
<th>358 MW at Pillsbury</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600 MW at Big Stone (G392)</td>
<td>150 MW at Rugby (G380)</td>
</tr>
<tr>
<td></td>
<td>100 MW at Ladish (G645 & G788)</td>
<td></td>
</tr>
</tbody>
</table>
Fargo Line Optimization Study
Sites studied

- Flint – approximately 2 miles south of Sheyenne Substation
- Frontier – existing Minnkota Substation
- WAPA Fargo – existing WAPA Substation
- Bison – north of Mapleton
- Northwest Angle – 3.5 miles west of Maple River
Fargo Line Optimization Study
Sites studied
Fargo Line Optimization Study
Recommended plan

• Staged Development – only Phase I being pursued at this time

• Phase I
 – Route new line south and west of Fargo to new Bison Substation
 – Add Maple River-Cass County 345 kV line (potential initial operation at 230 kV)
 – Acquire Flint site for future use → secondary option to further develop Frontier site
Fargo Line Optimization Study
Recommended plan
Fargo Line Optimization Study
Recommended plan

• Phase II
 – Develop 345/230 kV Flint site (alternately develop Frontier; Flint preferred)
 – Develop Cass County-(Sheyenne)-Flint 230 kV (future 345 kV)
 – Construct Flint-Benton County 345/230 kV or Flint-Brookings County 345 kV line
 – Add Flint-Bison second circuit
 – Short Fargo area 230 kV reconductors
Fargo Line Optimization Study
Recommended plan
Fargo Line Optimization Study
Recommended plan

- Phase III
 - Convert Maple River-Cass County-Flint 230 kV to 345 kV
 - Add second circuit to Flint-Monticello 345 kV line
 - Other relatively minor reconductors
Fargo Line Optimization Study
Recommended plan
Fargo Line Optimization Study
Recommended plan

• Phase I
 – Yields 700 MW of southward capability and 700+ MW northward capability
 – 500 kV incremental loading concerns starting at 360 to 400 MW south flow
 – Southward transfer limited by Sheyenne-Audubon 230 kV loading for loss of Fargo-Alexandria 345 kV

• Phase II
 – Yields additional 600 MW southward capability
 – Southward transfer limited by Dorsey-Forbes 500 kV loading

• Phase III
 – Yields an additional 400 MW southward capability
Fargo Line Optimization Study
Fargo area load-serving

- Need is soon (~2014 to 2017 depending on load growth)
- Need date coordinates well with CapX2020 development timing
- Need new 115 kV source between existing Maple River and Sheyenne 230/115 kV sources
- Maple River-Cass County-Flint 230 kV development
 - Provides new injection point at Cass County (Fargo area would be served by four 115 kV injection points – WAPA Fargo, Maple River, Sheyenne, Flint)
 - Enhances transfer capability achieved with CapX2020 line by creating loop through Fargo area
 - Helps avoid through-flow (and overloads) on other network 230 kV facilities
Fargo Line Optimization Study

Losses

- Extending Fargo-St. Cloud-Monticello line to 345 kV system (Bison or Maple River) yields significant loss reduction
- Study investigated stopping on south side of Fargo and relying on 230 kV system to transmit power
- Loss savings are magnified as additional generation resources are interconnected
- Bison site had most optimal loss performance
- Phase II configurations resulted in significant additional loss savings (~60 to 90 MW)
Fargo Line Optimization Study
Other considerations

• Initial input from routing determined going around east side was possible
 – Airport routing concerns
 – Maple River determined to be undesirable endpoint
 – Not possible to pursue development south of Fargo as no incremental load-serving benefit achieved

• North sites slightly lower lying than south sites
Fargo Line Optimization Study
Conclusions

• Recommended plan provides roadmap for coordinated future development of bulk transmission to maximize benefits of Fargo-St. Cloud-Monticello line considering:
 – Fargo load-serving needs
 – Generation delivery benefits
 – Overall system reliability
 – Site-specific considerations